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ABSTRACT 

 

 Road traffic accidents constitute one of the most pressing concerns for 

governments worldwide. Thousands of people are fatal and injured on the roads due 

to accidents. This study aims to analyze and predict road traffic accidents and 

casualties in Yangon using data from the No. (2) Office of Traffic Police for the 

period from January 2013 to December 2022. Descriptive statistics show that the 

number of accidents increased from 2013 to 2014, but it has significantly decreased 

starting from 2015. The analysis of the binary logistic regression model reveals that 

the risk factors for traffic casualties mainly include gender, place of accident, type of 

vehicle, time of accident, and immediate causes of accidents. Furthermore, the best-

fitting model for predicting traffic accidents was found to be ARIMAX-TFM (0, 1, 1). 

Similarly, ARIMAX-TFM (1, 0, 1) and ARIMAX-TFM (1, 0, 1) were the best-fitting 

models for traffic injury and fatality data. The forecasted number of traffic accidents 

and injuries is steadily decreasing, while the number of fatalities is steadily increasing 

for January 2023 to March 2023. Additionally, the analysis of ARIMAX-TFM 

confirms a significant impact of road safety measures on the reduction of the number 

of accidents and casualties in Yangon. To reduce road traffic accidents, traffic 

authorities should focus on upgrading safer driving behaviors, improving the safety 

features of vehicles, enforcing laws related to key risks, conducting public awareness 

campaigns to better understand the risks, and establishing a comprehensive strategy.  
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CHAPTER I 

INTRODUCTION 

 

 Road Traffic Accidents (RTAs) are widely considered as public health issue of 

individual countries around the world. Recently, RTAs were the 8th leading cause of 

death for people of all ages, according to the World Health Organization (WHO, 

2018). The Global Status Report on Road Safety 2015 by WHO predicts that RTAs 

will become the 7th leading cause of death by 2030. They are also the main cause of 

human and economic losses in both developed and developing countries. Moreover, 

RTAs result in physical disabilities for drivers, passengers, and pedestrians, 

particularly in developing countries (Zimmerman et al., 2012).  

 The recent economic and technological developments have led to a rapid 

increase in the number of vehicles used by the public. Consequently, the number of 

accidents and casualties has significantly risen as well (Karacasu, Ergul and Yavuz, 

2013). Traffic injuries and deaths have a tremendous impact on the socio-economic 

development of nations. Myanmar, being a developing country, currently faces a high 

level of traffic accidents (World Life Expectancy, 2020).  

 Therefore, this study aims to analyze the current situation of road traffic 

accidents and casualties in Yangon, a densely populated city in Myanmar. 

Additionally, the study examines the impact of national road safety measures on 

traffic accidents and casualties, and achieves the most suitable model for forecasting 

the number of accidents, injuries, and fatalities in some consecutive years in the 

future. 

 

1.1 Rationale of the Study 

            Road traffic accidents can be seen as the universal occurrences, leading to 

injuries and fatalities in every country worldwide, impacting the safety and well-being 

of individuals and communities. In recent years, it has been estimated that there are 

roughly 1.3 million deaths annually, averaging around 3,287 deaths per day due to 

road traffic accidents. Among children and young people aged 5 to 29 years, traffic 
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fatalities are the primary cause of death globally. More than half of all road traffic 

deaths involve pedestrians, cyclists, and motorcyclists. These incidents predominantly 

occur in low-income and middle-income countries, accounting for 93% of all road 

traffic deaths (WHO, 2018). 

            Road traffic accidents are indeed caused by a variety of factors, including 

human errors, mechanical faults, failure to comply with regulations, and weather 

conditions. In many developing countries, rapid economic growth has led to 

significant changes in the traffic environment. As a result, there has been a substantial 

increase in the number of motorized two-wheelers (motorcycles) and four-wheelers 

(automobile vehicles) used. However, in these countries, there is often a lack of 

comprehensive road safety education and driving instructions available to road users. 

 The limited opportunity for receiving complete road safety education and driving 

instructions in developing countries contributes to low levels of normative awareness and 

underdeveloped driving skills among road users. This, in turn, leads to an increase in 

accidents and traffic congestion. In particular, the number of traffic accidents caused by 

young people has been observed to rise (Kitamura, Hayashi and Yagi, 2018). 

 In Myanmar, there has also been an alarming increase in traffic accidents, and 

its concomitant deaths, and injuries on an annual basis. Traffic injuries represent one-

third of all injuries reported by hospitals over the country in 2014. Since 2008, the 

number of road accidents in Myanmar has been steadily rising. In 2020, the number of 

deaths resulting from road traffic accidents (RTAs) reached 11,004, which accounted 

for 3.05% of the total deaths in Myanmar. The age group most affected by road 

accidents is young adults aged 15 to 45. Inadequate road networks and insufficient 

road maintenance also contribute to the high incidence of road injuries and fatalities 

(WHO, 2015). Myanmar's road infrastructure is considered the second most 

dangerous among ASEAN countries, excluding Thailand. Moreover, Myanmar has 

the second-highest road fatality rate in South-East Asia regions (WHO, 2019).   

 Additionally, according to the 2014 Myanmar Population and Housing 

Census, the total population of Myanmar is 51,486,253, with over 4,407,741 

registered vehicles in the country.  If the rate of vehicle fleet expansion continues, it is 

estimated that the number of road fatalities could double by 2020 and triple by 2025, 

as stated by the Asian Development Bank (ADB, 2016). According to the ADB 

(2016) and WHO (2018), in Myanmar road accidents are usually attributed to human 
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errors such as reckless driving, over-speeding, using defective vehicles, excessive 

drinking of alcohol, and the consumption of narcotics, and so on.  Furthermore, 

factors such as rapid urbanization, poor safety standards, lack of enforcement, 

distracted driving, and failure to wear seatbelts or helmets are also considered 

significant contributors to the high number of traffic fatalities in the country. 

 As stated in the 2014 Myanmar Population and Housing Census, the Yangon 

region is indeed the most populated region in Myanmar. The Yangon Region is 

divided into 14 districts and encompasses a total of 45 townships. These townships 

are distributed as follows: 14 townships in the Eastern District, 12 townships in the 

Western District, 10 townships in the Southern District, and 9 townships in the 

Northern District. Out of these, 5 townships in the Northern District, 14 townships in 

the Eastern District, and 12 townships in the Western District are located within the 

boundaries of the Yangon municipal area. The remaining 4 townships in the Northern 

District and 10 townships in the Southern District are located outside the Yangon 

municipal area (Department of Population, 2015). 

 In Myanmar, the Yangon Region stands out against the highest rate of traffic 

accidents, and the transportation system in this region is largely dominated by cars.  

The number of deaths resulting from traffic accidents in the Yangon region has been 

increasing year by year. In Yangon, thirty-five people were dead and 197 injured in 

January 2017 due to road traffic accident, and this figures rose to 51 fatalities and 275 

injuries in May of the same year (Oliver, 2017).  

 In the context of reducing road traffic accidents and casualties, the road safety 

plans and measures play a crucial role. Therefore, this study aims to analyze the risk 

factors associated with road traffic accidents and casualties while assessing the impact 

of road safety measures in the Yangon municipal area. To achieve this, the study will 

employ an appropriate time series analysis and it is expected to provide valuable 

insights into the effectiveness of road safety measures and its influence on reducing 

road traffic accidents and casualties in Yangon. 

 

1.2    Objectives of the Study 

 The main objective of this study is to analyze the road traffic accidents and 

casualties in Yangon. This main objective is supported by the following specific 

objectives: 
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(i)   To describe the status of traffic accidents and casualties in Yangon 

(ii)   To analyze risk factors related to traffic casualties in Yangon 

(iii) To examine the impact of road safety measures on occurrence of traffic 

accidents and casualties in Yangon 

(iv) To predict the number of traffic accidents, injuries and fatalities by using the 

time series model selected as the most suitable one. 

 

1.3    Method of Study    

 In this study, a descriptive analysis was conducted to determine the status of 

traffic accidents and casualties including fatalities and injuries. Additionally, the study 

employed a Logistic Regression model to explore the risk factors associated with 

traffic casualties in Yangon. To analyze the impact of road safety measures on the 

occurrence of accidents, injuries, and fatalities in Yangon, several time series models 

such as Autoregressive Integrated Moving Average (ARIMA) model, Intervention 

model and Autoregressive Integrated Moving Average with explanatory variables-

transfer function (ARIMAX-TFM) were employed. Intervention model and 

ARIMAX-TFM were used to assess the variations in the number of traffic accidents, 

injuries and fatalities during the period in which the safety measures were 

implemented. In addition, the most suitable model was chosen to predict the number 

of traffic accidents, injuries and fatalities occurred in Yangon. 

 

1.4  Scope and Limitations of the Study 

 Yangon is not only the largest city but also the industrial and commercial 

center of the country. The Yangon Region comprises 14 districts with a total of 45 

townships. Among these townships, 31 are located within the boundaries of the 

Yangon municipal area, while the remaining townships are situated outside of it. In 

this study, the focus is only on the townships within the Yangon municipal area. The 

monthly time series data of road traffic accidents as well as casualties in Yangon, 

covering the period from January 2013 to December 2022 are used in this study. The 

information which could be attributed to the risk factors such as gender, place of 

accident, type of vehicles, time of accident, drinking habit, immediate causes of 

accident, and other specific conditions including over speeding, reckless driving and 
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pedestrian negligence were obtained from the No. (2) Office of Traffic Police in 

Yangon.  

 

1.5 Organization of the Study 

 This study is structured into six chapters. Chapter I provides an introduction to 

the research, including the rationale of the study, objectives of the study, the method 

of study, and the scope and limitations of the study. It also outlines the organization of 

the study. Chapter II comprises a comprehensive literature review, encompassing 

various studies on road traffic accidents and casualties, risk factors, and road safety 

measures. Chapter III focuses on the methodology used for analyzing road traffic 

accidents and casualties. Then Chapter IV presents the analysis of risk factors 

associated with casualties in road traffic accidents occurred in Yangon. The time 

series analysis of road traffic accidents and casualties are discussed in Chapter V. The 

last chapter summarizes the findings obtained throughout the study, offers 

recommendations based on the results, and suggests the areas for further research. 
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CHAPTER II 

LITERATURE REVIEW 

 

 This chapter presents a review of the available literature related to road traffic 

accidents and casualties as well as road safety measures. It mainly includes the 

definition of road traffic accidents and their consequences, previous trends of road 

traffic accidents and casualties, risk factors associated with road traffic accidents, and 

road safety measures on both global and national basis.  

 

2.1       Defining Road Traffic Accident and its Consequences  

The National Institute for Statistics and Economic Studies (INSEE, 2016) 

stated that: "A traffic accident refers to any accident involving at least one road 

vehicle, occurring a road open to public circulation, and in which at least one person 

is killed or injured".   

The following definitions are further provided by the Department for 

Transport, Scottish Government in Great Britain (2010): 

“Accident involves personal injury occurring on the public highway (including 

footways) in which at least one road vehicle or a vehicle in collision with a 

pedestrian is involved and which becomes known to the police within 30 days of 

occurrence. The vehicle need not be moving and accidents involving stationary 

vehicles and pedestrians or users are included”.  

“Casualty is a person killed or injured in an accident. Casualties are sub-

divided into killed or fatal injury, serious injury, and slight injury”.                          

          "Killed persons’ are accident victims who die immediately or within 30 days 

following the accident, and ‘injured persons’ are accident victims who have suffered 

trauma and required medical treatment with or without hospitalization". 

 “Fatal injury is Human casualties who sustained injuries which caused death 

less than 30 days after the accident”.  
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 “Serious injury is an injury for which a person is detained in hospital as an "in-

patient", or any of the following injuries whether or not they are detained in hospital: 

fractures, concussion, internal injuries, crushing, burns (excluding friction burns), 

severe cuts and lacerations, severe general shock requiring medical treatment and 

injuries causing death 30 or more days after the accident”.  

 “Slight injury is an injury of a minor character such as a sprain (including neck 

whiplash injury), bruise or cut which are not judged to be severe, or slight shock 

requiring roadside attention. This definition includes injuries not requiring medical 

treatment”. 

           WHO refers to injuries and fatalities as “any person killed immediately or 

dying within 30 days as the result of an accident while recording road traffic injuries 

or death” (Mohan, 2006, pg.51). 

           According to World Report on Child Injury Prevention (WHO, 2008); "A road 

traffic fatality is considered to be a death occurring within 30 days of a road traffic 

crash" (Mackie, 2003, pg.58). 

          The United Nations Cost-Benefit Analysis of Transport Infrastructure Projects 

(2003) states: "A damage-only accident is one in which there are no causalities. A 

fatal accident is the death of at least one fatality. A serious accident is one in which 

there is at least one serious injury but no fatalities. A slight accident is one in which 

there is at least one slight causality but no serious injuries and no fatalities". 

 Injury, also known as physical trauma, is damage to the body caused by an 

external force. Injuries may be caused by accidents, falls, impacts, weapons, and other 

factors. Major trauma refers to an injury that has the potential to cause prolonged 

disability or death. Furthermore, the World Report on Child Injury Prevention (WHO, 

2008) defines fatal or non-fatal injuries resulting from road crashes as road traffic 

crashes. Road Traffic Crash is defined as a collision or incident that occurs on a 

public road, involving at least one moving vehicle, and may or may not lead to injury. 

The Centers for Disease Control and Prevention (CDC) states that a non-fatal injury is 

a bodily harm resulting from exposure to an external force or substance or from 

submersion. 

 

2.2      Global Road Traffic Accidents and Casualties 

 The growth of the transportation system has been, and continues to be, a key 

element in global economic development. Road accidents affect every nation with a 
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result of human suffering and significant costs to communities. Moreover, Road 

Traffic Accidents (RTAs) are one of the leading causes of death worldwide. Every 

year, millions of people are injured and killed in these road traffic accidents. 

According to the report prepared by WHO (WHO, 2018), the death-toll from road 

traffic accidents has risen to 1.35 million per year, equating to nearly 3,700 people 

losing their lives on the world's roads every day. Additionally, countless individuals 

experience life-altering injuries with long-lasting effects. These losses have 

devastating impacts on the respective families and communities  

 Furthermore, WHO (2015) indicated an increase in the death rate attributed to 

traffic accidents in low-income countries since 2000. Pedestrians, cyclists, and 

motorcyclists accounted for more than half of the global deaths among vehicle-road 

users (WHO, 2018). According to WHO (2019), African followed by Southeast Asian 

countries exhibited significantly higher rates of road fatalities compared to the global 

average. Nearly half of the 650 daily deaths on Africa's roads involve pedestrians, 

cyclists, and motorcyclists. Out of which pedestrians and cyclists had been accounted 

for 44% of the fatalities in 2018. In contrast, in Southeast Asia and the Western 

Pacific regions, the highest number of deaths occur among riders of motorized two 

and three-wheelers, at 43% and 36%, respectively (WHO, 2018).  

 Moreover, motor vehicle crashes result from a variety of factors, including 

inadequate roadway design, hazardous conditions, failure to use safety devices such 

as helmets and seat belts, lack of appropriate vehicles and vehicle maintenance, 

unskilled or inexperienced drivers, inattention to pedestrians and cyclists, issues 

related to road sharing, and impairment due to alcohol, drug use, or fatigue, among 

others (Nantulya et al., 2010). Sometimes accidents occur due to a combination of 

reasons, ranging from poor visibility to unsafe road design or the lack of caution from 

other drivers.  

 Al-Ghamdi (2001) conducted an analysis of the influence of accident factors 

on accident severity in Riyadh. In which the accident-related data was examined using 

logistic regression model. A total of 560 samples were collected for serious accidents 

and the model utilized the including serious severity as the dependent variable along 

with nine explanatory variables. The study revealed that accident location and 

accident cause were found to be the most significantly factors associated with the 

severity of traffic accidents.  
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 Cools et al. (2009) employed three modeling approaches, namely SARIMA, 

ARIMAX, and SARIMAX, to predict daily traffic flow. The study identified the four 

traffic count locations: Brussels, Gasthuisberg, Here, and Zandvoorde and the analysis 

involved examining the cyclicality in daily traffic data as well as identifying and 

comparing holiday effects across these different locations. The results indicated that 

the ARIMAX model was more effective in estimating the variations in daily traffic 

flow. 

 Awal (2013) investigated the risk factors involved in road accidents in Ghana 

using logistic regression analysis. Accident-related data were collected from the 

Motor Traffic and Transport Unit of Ghana Police Service, Techiman Divisional 

Command. A total of 494 accident data from 2007-2011 were used. In this study, the 

dependent variable was used as accident severity, and there were six independent 

variables such as gender, age, vehicle type, time of accident, and location of accident, 

and reasons assigned to the accident. Out of the six explanatory variables, four were 

statistically significant. These include gender, type of vehicle at fault, location of 

accident, and reasons assigned to the accident. 

 Katta (2013) conducted a study to identify the risk factors that influence the 

severity of crashes in work zones in the state of Ohio. The data for the study was 

collected from the Ohio Department of Traffic Safety for the year 2010. A total of 

12,275 crash records, with 24 different independent variables, were used in the 

development of the Crash Severity Model (CSM). The study also employed various 

statistical methods, including the Pearson chi-square test, regression modeling, and 

binary logistic regression. A binomial logit model was specifically utilized to predict 

the severity of crashes. The results of the binary logistic regression analysis revealed 

that seventeen variables, divided into forty-four categories, were identified as 

influencing factors for crash severity which is either fatal or injury. The analysis also 

demonstrated that the Crash Severity Model fit the data well, with a prediction 

accuracy of 72.8 percent.  

 Avuglah, Adu-Poku and Harris (2014) examined the trends and patterns of 

road traffic accidents in Ghana from 1991 to 2011 using the ARIMA model. The 

study emphasized the importance of implementing key road safety measures to 

address Ghana's increasing pattern of road accidents. According to the results, the 

ARIMA (0, 2, 1) model was considered as the most suitable statistical tool to estimate 

the future road traffic accidents. 
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 Chen and Tjandra (2014) developed the study to develop models for 

predicting daily total collisions. The study first analyzed trends, seasonality, and 

randomness using daily crash time series data before investigating potential 

contributors to collisions. Temporal factors such as months, weekdays, and holidays, 

as well as weather forecasts including daily mean temperature, amount of rainfall, and 

snowfall, were selected as predictive factors. The study estimated and diagnosed a 

seasonal autoregressive integrated moving average model with external regressors 

(SARIMAX), along with a series of SARIMAX models of different orders. 

Additionally, a generalized linear model (GLM) was developed and compared to the 

SARIMAX models using validation measures. The GLM model considered the 

significance of all parameter estimates at a 10% confidence level, and the SARIMAX 

(7, 0, 0) × (4, 0, 1)7 model exhibited the best performance. 

 Salako, Adegoke and Akanmu (2014) conducted time series analysis to model 

and detect the seasonality pattern of auto-crash cases in Osun. The research analyzed 

the data spanning six years (2006-2012) on the causes of motor vehicle. The ARIMA 

model was used to assess the recorded cases, and the least-squares trend indicated a 

quarterly decline in six causes of motor vehicle accidents. The results revealed a 

seasonal pattern where the fourth quarter of a year including October, November, and 

December had a higher prevalence of motor accidents. The study also highlighted that 

the Federal Road Safety Commission has performed adequately in discharging its 

duties. 

 Atubi (2015) carried out the monthly analysis of road traffic accidents in nine 

selected Local Government Areas of Lagos State, Nigeria. The aim of the study was 

to suggest preventive and corrective safety measures to reduce road traffic accidents. 

The investigation covered accident records from Nigeria spanning 32 years (1970-

2001). Time series and averaging models were utilized to analyze road traffic 

accidents, including the total number of deaths, total number of injuries, and cases 

classified as fatal, serious, and minor in Lagos State. The researcher discovered that 

the months of June, July, September, October, November, and December had the 

highest occurrence of accidents in Nigeria. This was attributed to the rainy season, as 

wet road conditions adversely affected drivers' visibility. Among the rainy months, 

June, July, and September were identified as the peak periods for road accidents. 

 Mutangi (2015) identified the suitable time series model for forecasting the 

annual number of traffic accidents that may occur in Zimbabwe. The study utilized 
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three categorical data such as: total reported road accident cases, persons killed in 

road accidents, and persons injured. The findings indicated that the ARIMA (0, 1, 0) 

model was the most appropriate for the estimation of potential occurrences of road 

traffic accident cases as well as the number of persons killed in such road traffic 

accidents. 

 Sanusi, Adebola and Adegoke (2016) conducted a study on road accidents in 

Nigeria categorizing the data into minor cases, serious cases, fatal cases, and total 

cases. The research employed the Autoregressive Moving Average (ARIMA) model 

to provide the reliable and valuable information for determining the rate of road 

accidents in Nigeria's motorways and implementing necessary preventive measures. 

For the minor and total cases, the ARIMA (1, 1, 1) model was obtained. The serious 

cases were modeled by ARIMA (1, 1, 0), while the fatal cases were modeled through 

the ARIMA (0, 1, 1). These models were developed using data from 1960 to 2011, 

and the adequacy and performance of the models were tested using data from 2012 to 

2013. The models were then utilized to forecast the different cases from 2014 to 2020. 

 Yousefzadeh-Chalook et al. (2016) conducted an analysis using a time series 

model to assess the trend and forecast road traffic accident mortality. The study 

collected data on road traffic victims from the traffic police of Zanjan Province, Iran, 

covering the period from 2007 until 2013. Various time series models, including AR, 

MA, ARMA, ARIMA, and SARIMA, were utilized in this study. The findings 

revealed a decreasing trend in road traffic accident mortality over the past and some 

future years. Among the models tested, the SARIMA (1, 1, 3) × (0, 1, 0)12 was 

determined to be the best fitted model for the data collected, providing the most 

accurate predictions in this study.  

 Ihueze and Onwurah (2018) investigated road traffic crashes in Anambra 

State, Nigeria. The study employed ARIMA and ARIMAX modeling techniques to 

forecast the frequency of crashes in the state. In the ARIMA model, eleven 

contributing factors such as over speeding, tyre burst, loss of control, wrongful 

overtaking, brake failure, dangerous overtaking, weather condition, route violation, 

obstruction, dangerous driving and sign light violation were considered as explanatory 

variables. The study found that incorporating human, vehicle, and environmental-

related factors in the time series analysis of crash datasets resulted in a more robust 

predictive model compared to solely using aggregated crash counts. When comparing 
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the performance of the two models, the ARIMAX model demonstrated superior 

performance over the ARIMA model in this study. 

 Awaab, Combert and Atongdem (2019) conducted a time series analysis in 

relation to motorcycle registration and accidents in the Bolgatanga municipality. The 

study examined the relationship between issuing motorcycle licence and occurrence 

of accidents in Ghana. It was found that motorcycle accident cases were 

underreported within the municipality. The reasons for not reporting accident cases to 

the police included inability to identify the persons involved, belief that it was not 

necessary to report to the police, fear of punishment, distance from the police station, 

and the demand for money. Motorcycle accidents were caused by various factors, 

such as colliding with the back of a vehicle, hitting an animal, hitting the pavement, or 

being hit by another motorist. The study revealed that most victims experienced a 

reduction in their working abilities, and some resorted to borrowing money or selling 

assets to cope with the consequences of the accidents. The findings highlighted that 

the number of motorcycle registrations increased significantly between 2004 and 

2005, followed by a steady decline until 2007. Subsequently, there was a gradual 

increase until 2012, followed by a sharp decline until 2014. 

 Eboli, Forciniti and Mazzulla (2020) conducted a study analyzing accidents 

and their severity, as well as the factors influencing them. The study focused on 

investigating the characteristics that can impact the severity of accidents in Italy, 

while differentiating between various accident types. The factors were examined and 

grouped into different categories such as road conditions, the external environment, 

and driver-related factors. The researchers employed logistic regression analysis to 

uncover significant associations between the identified factors and the severity of 

accidents. The findings of the study indicated noteworthy differences among the 

various accident types and also provided the meaningful interpretations that can be 

utilized to enhance safety measures and make future improvements in Italy's accident 

prevention strategies. 

 Erena and Heyi (2020) presented the prevalence of road traffic accidents and 

associated risk factors among drivers of three and four-wheeled vehicles in East 

Wollega, Western Ethiopia. From February to March 2017, a cross-sectional study 

design was employed, involving 400 drivers of three and four-wheeled vehicles. The 

bivariate and multivariate analyses were used in the study. The findings revealed that 

one-third of the vehicle drivers had been involved in a road traffic accident and the 
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factors such as collisions with other vehicles and pedestrians crossing the road, 

talking on a mobile phone while driving, failure to wear a seat belt, type of road 

regularly driven on, receiving an oral warning, and penalties were found to be largely 

associated with road traffic accidents.  

 Twenefour et al. (2021) examined a time series analysis of road traffic 

accidents in Ghana. The study utilized monthly traffic accident data from January 

1990 to December 2019, obtained from the National Road and Safety Commission in 

Ghana. The researchers found that the ARMA (1, 0) model provided the best fit for 

the estimation of the Ghana annual traffic accident data. They also discovered that the 

forecasted values for January 2020 to July 2020 yielded consistent results. 

 

2.3      Regional Road Traffic Accidents and Casualties 

 In the South-East Asian region, road traffic injuries kill approximately 

316,000 people each year. That number accounted for 25% of road traffic fatalities 

worldwide. The global road traffic death rate was 17.4 per 100,000 people, whereas in 

the South-East Asian Region, it was 17 deaths per 100,000 people. The South-East 

Asian Region occupied the highest proportion of global traffic deaths (WHO, 2015). 

   Moreover, WHO (2018) has indicated that the road fatality rate per 100,000 

population in Malaysia and Thailand was about five times greater than that in 

Singapore. Singapore's road fatality rate of 3.6 was similar to that of the world's best-

performing nations in terms of traffic, such as the Netherlands (3.4) and the United 

Kingdom (2.9). The following Table (2.1) provides evidence showing the status of 

road traffic fatalities in ASEAN countries. 
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Table (2.1) 

Traffic Fatality Rate in ASEAN Countries 

Fatalities 

Per 

100,000 

Population 

Low income 

($1045 or less in per 

capita GNI) 

Middle income 

(more than $1045 but 

less than $12736 in per 

capita GNI) 

High income 

($12736 or 

more in per 

capita GNI) 

Low 

(< 10) 

  Brunei & 

Singapore 

Medium 

(10-15) 

 Philippines &Lao PDR  

High 

(> 15) 

Cambodia & Myanmar Indonesia, Malaysia, 

Thailand & Viet Nam 

 

Source: WHO (2015)  

 

   Road trauma was higher in middle-income countries and still increasing in 

ASEAN. Low-income countries, such as Myanmar and Cambodia, generally had 

lower rates of motorization and lower fatality rates. Unless strong action was taken, 

the economic development in these countries would be accompanied by increasing 

deaths and injuries on the road. 

   According to WHO (2018), the South-East Asia regional breakdown of deaths 

understated the burden of deaths among vulnerable road users in all countries except 

Brunei. There was also significant variation within the region, with the most profound 

effect observed in Thailand, where 83% of road deaths were among vulnerable road 

users.     

 Sarani et al. (2012) emphasized the development of time series models to 

predict road fatalities for the year 2020 in Malaysia. The research employed the 

ARIMA model and the Generalized Linear model (GLM) to forecast road accidents. 

The findings indicated that the ARIMA (0,1,1) model was deemed to be the most 

effective for predicting Malaysian traffic fatalities. With this ARIMA model, the 

expected number of fatalities was projected to reach 10,716 in 2020.   

 Darma (2017) conducted a study multiple regression model to select 

explanatory variables that exhibited significant profound effect on the number of road 

traffic fatalities. These variables were then used as input variables for the time series 

analysis. The effectiveness of a road safety measure was assessed using the State-
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space, ARIMA and transfer function-noise models, respectively. Forecasting of 

fatalities up to the year 2020 was performed using these three models as well. The 

findings revealed that motorcyclists were the primary victims of road traffic accidents, 

young adult drivers/riders aged 16-25 years accounted for the highest percentage of 

total fatalities, with a value of 35% and the highest rate of fatal accidents per 

kilometer occurs at expressways.  

 Haque and Haque (2018) evaluated the effect of the Road Safety System 

Approach on serious road casualties, specifically fatalities and serious injuries, in 

Brunei. The study utilized the Auto Regressive Integrated Moving Average (ARIMA) 

and Intervention Time Series Analysis. The findings revealed that a substantial 

reduction of 30% in serious road casualties was observed within the first 12 months 

following the implementation of the Road Safety System Approach and the 

introduction of reformed road safety initiatives in Brunei. 

 Jomnonkwao, Uttra and Ratanavaraha (2020) conducted a study on forecasting 

road traffic deaths in Thailand. In this study, four methods were employed: time series 

analysis, curve estimation, regression analysis, and path analysis. The data used in the 

analysis encompassed the death rate per 100,000 population, gross domestic product 

(GDP), the number of registered vehicles (motorcycles, cars, and trucks), and energy 

consumption of the transportation sector. The results indicate that the top three 

models, based on the mean absolute percentage error (MAPE), are as follows: 

multiple linear regression model 3, time-series with exponential smoothing, and path 

analysis, with MAPE values of 6.4%, 8.1%, and 8.4%, respectively. 

 Husin et al. (2021) analyzed road accident cases in Malaysia using a dataset 

comprising monthly accident case numbers from January 2001 to December 2019, 

provided by Polis Diraja Malaysia (PDRM). These studies employed Box-Jenkins and 

state space models, evaluating their performance through in-sample and out-sample 

⎹assessments, considering metrics such as the lowest root mean square error, mean 

absolute percentage error, and mean absolute error. The results indicated that the basic 

structural state space model with trend and seasonal components was the most 

suitable model for forecasting road accident cases in Malaysia. The 10-year forecast 

from January 2020 to December 2030 revealed a consistent upward trend in monthly 

road accident cases in Malaysia each year. It is anticipated that the findings of this 

study could serve as a reference for Malaysian authorities when making 
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recommendations aimed at enhancing road safety and reducing road traffic accidents 

in the country.  

 Yahaya et al. (2022) identified determinants of Road Traffic Collisions (RTC) 

in Malaysia and forecasted RTC numbers for the next ten years using an ARIMA 

model. They conducted a correlation test using 15 years' data on RTC, population, 

GDP, new drivers, and registered vehicles from JKJR and the World Bank Group. 

The results indicated that registered vehicles, population, and GDP were the primary 

RTC determinants, with motorcycle accidents causing the highest number of injuries. 

RTC fatalities were projected to decrease by 0.82% annually, with an expected 5588 

RTA fatalities in 2029. The study highlighted the urgent need to reduce RTCs, 

especially after 6,284 fatalities in 2018. ARIMA (0,2, 3) was chosen as the best model 

for forecasting RTA fatalities in Malaysia, offering valuable insights for mitigating 

accidents and government intervention. 

 Sabenorio, Enriquez and Ramel (2023) analyzed road traffic accidents (RTAs) 

in Metro Manila, Philippines from 2012 to 2021. This study utilized a 10-year 

monthly dataset and applied an ARIMA model for a 5-year forecast. The research 

findings reveal that the total RTAs in Metro Manila gradually increased until the first 

quarter of 2020, then sharply declined, reaching its lowest point in April 2020 due to 

the COVID-19 lockdown. As the lockdown eased, RTAs partially rebounded, 

particularly those causing property damage, while injuries remained consistent. 

Despite the decrease in overall RTAs, injuries surged due to reckless driving 

behavior. The study identified ARIMA (1, 1, 12) as the best model. According to this 

model, the forecast suggests that total RTAs will stabilize at a halfway point in 2022 

and gradually decrease over the next 4 years.  

 

2.4      Road Traffic Accidents and Casualties in Myanmar 

 Myanmar is strategically located and rich in natural resources, including 

arable land, forests, natural gas, and freshwater and marine resources. The country 

boasts the largest mainland in Southeast Asia, with a total land area of 676,577 square 

kilometers (Florento and Corpuz, 2014). According to the ASEAN Regional Road 

Safety Strategy (ADB, 2016), Myanmar is classified as a low-income country in the 

South-East Asia Region. The International Monetary Fund estimates that Myanmar's 

economy ranks seventh in the ASEAN region.  
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 ASEAN Secretariat showed that Myanmar had a road network of 151,298 km 

in 2012, with a paved road length of 48 km per 100 sq-km of land area. The country 

also had 587 km of expressways. However, by international standards, the roads in 

Myanmar are considered to have moderate low extent and efficiency. In 2015, 

Myanmar had 14.5 motor vehicles per 1000 inhabitants and 9 motor vehicles per 

kilometer of road (ADB, 2016).  

 The supervising committee of the ASEAN Secretariat for traffic rule 

enforcement has reported that 12 lives are lost per day on the roads in ASEAN region. 

Among ASEAN countries, Myanmar's road infrastructure is the most underdeveloped. 

Although the road network expanded to 148,690 km as of March 2012 from 90,713 

km in 2004, the road density remains one of the lowest in the region. Only 39% 

(57,840 km) of the network is paved, while 61% (90,850 km) remains unpaved. The 

secondary and local road network in Myanmar is generally in poor condition and 

becomes unusable during the monsoon season. The main types of motorized vehicles 

in Myanmar include passenger cars, light trucks, heavy trucks, buses, motorcycles, 

two-wheelers, three-wheelers, trawlergyi, and others. As of 2015, Myanmar had over 

5.38 million vehicles, with motorized two and three-wheelers comprising the majority 

(85%), followed by four-wheeled passenger cars (8.33%). Trucks, including light 

trucks and heavy trucks, accounted for 4.43%, buses for 0.47%, and other vehicles 

made up 1.77% (ADB, 2016).     

    According to ADB (2016), the rate of fatalities per 1000 vehicles remained 

constant between 2008 and 2014, at 9.3. However, during the same period, the motor 

vehicle fleet more than doubled in size, increasing from 2 million to 4.6 million. This 

significant growth in the number of vehicles contributed to a rise in the absolute 

number of fatalities per year. In 2014, the number of road-related deaths reached 

4300, which is twice as many as the recorded figure in 2009. Additionally, one-third 

of all injuries reported by hospitals are a result of traffic accidents. If the situation 

remains unchanged, it is projected that fatalities will double by 2020 and reach 15,000 

per year by 2025. Furthermore, the number of road injuries has also witnessed a 

significant increase, nearly doubling from 12,626 in 2008 to 26,375 in 2016 (ADB, 

2016). 

    Motorcyclists and pedestrians account for the majority of annual fatalities in 

Myanmar. According to ADB (2016), motorcyclists (44%), three-wheel vehicle 

drivers (14%) and passengers comprised the majority of road traffic fatalities in 2013. 
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Moreover, Myanmar's Ministry of Health confirmed that motorcyclists represented 

the largest group, accounting for up to 47% of all injured road users in 2013. 

Pedestrians accounted for approximately 24.2% of all road users injured in the same 

year. Hospital data revealed that 31% to 36% of all injured patients admitted to 

Myanmar hospitals were a result of traffic crashes. In terms of fatal crash types, the 

major categories included head-on collisions, vehicle hitting incidents, pedestrian 

accidents, right-angle intersection crashes, run-off-road accidents, and rear-end 

collisions and these fatal crashes were mostly occurred in Yangon, Nay Pyi Taw, and 

Mandalay Regions (ADB, 2016). 

           According to the National Road Safety Council (NRSC) meeting, motorcycle 

accidents accounted for 49% of all traffic accidents in Myanmar in 2018, resulting in 

2,376 deaths and 12,965 casualties. It was also found that not wearing safety helmets 

increased the risk of death or injury for motorcyclists. Similarly, failure to wear 

seatbelts led to 6,276 injuries and 1,214 deaths in 2018. The annual report highlighted 

that individuals who did not wear seatbelts were twice as likely to get injured and four 

times more likely to die in an accident (The Republic of the Union of Myanmar 

President Office, 2019).  

 Kyaw (2015) conducted a study on the connection between highway road 

accidents and human rights issues in Myanmar. The research employed purposive 

sampling along with semi-structured and structured questionnaires for surveying. 

Thematic analysis was conducted to gain a comprehensive understanding of the issue. 

The study delved into the reasons behind the high number of road accidents, the 

underlying causes of these accidents, the human rights issues arising from them, and 

the state's obligations to uphold fundamental human rights such as the right to life and 

the right to health for passengers. The study's results revealed that weaknesses in 

traffic policies and their implementation, as well as the state's responsibilities in 

protecting human rights, act as significant barriers to ensuring passenger safety. This 

study suggests that weaknesses in traffic policy implementation in practice, coupled 

with the state's obligation to safeguard human rights, continue to pose significant 

obstacles to passenger safety, further resulting in the neglect of individual rights 

within the legal framework. 

 Mon, Pueboobpaphan and Ratanavaraha (2016) investigated the relationship 

between accident occurrences and road characteristics on the Yangon-Mandalay 

Expressway in Myanmar. The high frequency of traffic crashes on this expressway 
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has become a serious problem, resulting in numerous deaths, injuries, disabilities, and 

damage to both private and public properties. The study also examined the 

relationship between crash frequency and various road characteristics on the 

expressway. The major cause of traffic crashes on the Yangon-Mandalay Expressway 

was identified as over speeding. Additionally, the study further examined the impact 

of human behavior, road environment, and road characteristics on the occurrence of 

traffic crashes. To predict the number of crashes, a negative binomial regression 

model was used, considering variables such as average daily traffic, road geometric 

features, presence of bridges, and presence of village settlements along the 

expressway. The results indicated that accident occurrences were significantly related 

to average daily traffic, presence of bridges, presence of village settlements, 

percentage of downgrade (slope), and the combination of horizontal curve and slope 

on the expressway. These findings highlighted the importance of road characteristics 

in mitigating traffic crashes and improving road safety on the Yangon-Mandalay 

Expressway.  

 Lwin et al. (2016) analyzed the factors relating to motorcycle accidents 

encountered by motorcyclists, passengers, and pedestrians admitted to two hospitals 

in Nay Pyi Taw, Myanmar. The research findings revealed that the majority of 

motorcycle accident victims were male individuals under the age of 30, with an occupation 

of sales persons and a middle school level of education. Motorcyclists accounted for the 

highest proportion of road accident (57%) and 40% of these accidents were attributed to falls 

or motorcycles slipping. Several factors were identified as contributing to motorcycle 

accidents. These included driving without a license (31%), alcohol consumption (19%), high 

speeding (21%), over-tracking (3.5%), impaired visibility (9.4%), and mechanical issues 

such as broken brakes, tires, or engines (4%). In terms of accident locations, 48% of urban 

accidents occurred on straight roads, while 16% and 6% of rural accidents took place on 

rough and curved roads, respectively.  The study also examined the outcomes of the 

accidents. Nineteen percent of the individuals were treated as outpatients, 53% were 

categorized as non-severe inpatients, and 18% were classified as severe inpatients. The cases 

resulting in fatalities were primarily attributed to head injuries (76.5%) and multiple injuries 

(23.5%).  

 Khin (2016) made an empirical analysis of traffic accidents in Myanmar, 

employing binary logistic regression, multinomial logistic regression, and state space 

models. The study yielded several noteworthy findings. In the binary logistic 



 

 

20 

regression model, the coefficients for age, types of occupation, and the time period of 

12-18 hours were statistically significant at the 5% level, while the time period of 0-6 

hours was significant at the 1% level. However, gender did not demonstrate statistical 

significance in predicting traffic accidents.  The multinomial logistic regression model 

revealed significant associations between various factors and the severity of accidents. 

All age groups below 60 years, possession of a learner driving license, and two types 

of accidents involving collisions with other vehicles and pedestrian’s accidents were 

found to be significant predictors at the 1% level. These predictors were compared 

against slightly injured, severely injured, and property damage only cases. Regarding 

the state space models, none of them met the required assumptions for the fatality 

series in Myanmar from 1998 to 2014. As a result, the linear trend model was 

identified as the best-fitting model.  These findings contribute to a better 

understanding of the factors associated with traffic accidents in Myanmar and 

emphasize the importance of considering age, occupation, time of day, and accident 

types in efforts to prevent and mitigate road accidents.         

 

 2.5      Road Traffic Accidents and Casualties in Yangon  

 Yangon, the largest city in Myanmar, served as the seat of government from 

1948 to 2005. It is a significant industrial and commercial hub, acting as the main 

center for trade in the country. Located in lower Myanmar, Yangon sits at the 

convergence of the Yangon and Bago Rivers, approximately 30 km from the coast. 

The city falls within the wider Delta Region of the South, bordered by Bago Region to 

the North and East, Ayeyarwady Region to the West, and resting on the shores of the 

Andaman Sea to the South. Spanning a total area of 10,276.7 km2, Yangon boasts a 

well-developed transportation network connecting it with other regions and states. 

The city plays a pivotal role in foreign commerce, handling over 80% of the country's 

international trade. Additionally, Yangon serves as the central hub for national rail, 

river, road, and air transportation systems. 

 According to the Myanmar Population and Housing Census conducted in 

2014, the total population of the Yangon Region was 7,360,703. Out of this 

population, there were 3,516,403 males and 3,844,300 females. The census also 

revealed that the population of the Yangon Region accounted for approximately 

14.3% of the total population of Myanmar. In terms of transportation, the Yangon 

Region boasts the best infrastructure in the country. All transport to and from other 
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parts of Myanmar, as well as international travel, passes through Yangon. The city is 

connected to the rest of the country through "Five highways." Additionally, Yangon 

serves as the central hub for national rail, river, road, and air transportation systems. 

Public transportation in Yangon is primarily dominated by buses, while motorcycles 

have been prohibited from entering the central city area, resulting in a small share of 

motorcycles in the transportation mix. Data from the Road Transport Administration 

department and the Asian Development Bank indicate that the number of vehicles in 

the Yangon Region increased from 174,379 in 1995 to 267,594 in 2012. Between 

2012 and 2015, the vehicle fleet in the region experienced a growth of 37%. The 

number of cars doubled within three years, and the car ownership rate reached 

approximately 62 per 1000 population in 2015 (ADB, 2016). 

 According to Uhrig (2019), a total of 2,684 accidents were recorded within the 

Yangon Region in 2018, resulting in 599 deaths and 3,164 injuries. In the first four 

months of 2021, there were 333 car accidents reported in the Yangon Region. 

However, motorbikes have been banned and prohibited in 33 townships under the 

administration of the Yangon City Development Committee, leading to non-

compliance with traffic rules by some individuals. As a result, the No.(2) Traffic 

Police (Yangon) has taken legal action against motorcyclists who do not adhere to the 

Vehicle Safety and Vehicle Management law (Maung, 2021). 

 Inaba and Kato (2017) conducted an analysis on the potential impacts of 

motorcycle demand management and its contribution to the transportation market in 

Yangon City (33 townships) and six adjacent townships (Thalyin, Hmawbi, Helgu, 

Htantabin, Twantay, and Kyauktan). The study involved surveying 8,289 households 

and collecting data on 24,373 trips in Yangon. Descriptive statistics and a logit model 

were utilized in the study. The results indicated that implementing a ban on 

motorcycles could lead to a reduction in traffic volume and vehicle kilometers 

traveled by approximately 18.0% and 26.9% in 2013, respectively. However, these 

reductions were projected to be only 4.5% and 6.0% by 2035. The ban was found to 

significantly contribute to mitigating the current urban transportation problems. It was 

also observed that as income levels increased, there would be a promotion of car 

ownership and a substitution of motorcycles, offsetting the effects of reduced 

motorcycle trips in the future. 

 Htwe (2017) studied the inpatient burden of road traffic accidents (RTAs) at 

Yangon General Hospital. The study analyzed electronic medical records data of RTA 



 

 

22 

patients from July 2016 to June 2017, specifically focusing on a sample of 100 out of 

276 patients selected through a systematic random sampling method. The results 

revealed that the bed occupancy rate for RTA patients was 13.62% in the 

neurosurgical unit, 2.64% in the orthopedic unit, and 1.34% of the total available beds 

in the hospital. During the study period, RTA patients accounted for 45.23% of the 

total admitted trauma patients at Yangon General Hospital. The average duration of 

hospital stay for RTA patients was 5.7 days, and 76% of them were discharged within 

one week. The majority of the RTA victims (78%) were male, and 83% belonged to 

the economically active age group. Among the patients, 78% were motorcycle drivers, 

and 15% were motor vehicle drivers. In terms of injuries, over half (60%) sustained 

injuries to the head and neck, while 11% had lower extremity injuries. The 

management of RTA patients predominantly involved conservative treatment, with 

86% receiving oral and injection drugs. Additionally, 38% underwent dressing 

procedures, 23% required surgical operations, and 15% needed suturing. Based on the 

exchange rate of June 2017, the total clinical management cost for each RTA patient, 

including treatment, laboratory tests, and imaging, amounted to 82,811 Kyats, 

equivalent to approximately 60.8 USD incurred by the hospital.  

 

2.6      Risk Factors of Road Traffic Accidents and Casualties 

 According to WHO (2009), 90% of road accidents are caused by human error. 

Petridou and Moustaki (2002) stated that human factors contribute to over 95% of 

global road fatalities. Adanu and Jones (2017) noted that drivers and their driving 

habits play a dominant role in causing traffic crashes. Wearing seat belts can prevent 

approximately 50% of fatal injuries in a traffic accident (Ma et al., 2012). Failing to 

wear a seat belt is particularly hazardous for drivers and contributes to more fatalities 

than any other unsafe driving behavior (Fernando et al., 2012). Therefore, drivers 

should have a good understanding of traffic rules and laws.  

 Drink-driving significantly increases the risk of road traffic crashes, and it also 

raises the likelihood of fatalities or severe injuries resulting from those crashes. 

Drinking and driving is often linked to engaging in other high-risk behaviors on the 

road. Studies have estimated that alcohol-related factors contribute to 5-35% of all 

reported road deaths. Driving under the influence of alcohol substantially elevates the 

risk of being involved in a crash and exacerbates its severity. Laws addressing drink-

driving typically establish a blood alcohol concentration (BAC) limit, such as 0.05 
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g/dl for the general population and 0.02 g/dl for young or novice drivers (WHO, 

2018). 

 According to the Road Safety-Alcohol report by WHO in 2004, it was found 

that in many high-income countries, approximately 20% of drivers who were fatally 

injured had a blood alcohol concentration exceeding the legal limit. In low-income 

countries, alcohol was found to be present in the blood of 33% to 69% of fatally 

injured drivers. Even drivers and motorcyclists with a blood alcohol content greater 

than zero face a higher risk of being involved in a crash compared to those with a 

blood alcohol content of zero. The risks associated with these blood alcohol levels are 

higher than previously believed. As a result, many countries have chosen to lower 

their legal blood alcohol content limits to 0.05 g/dl. Additionally, as blood alcohol 

levels increase, the severity of injuries sustained in a road crash also tends to increase. 

Inexperienced young drivers with a blood alcohol content of 0.05 g/dl have a 2.5 

times higher risk of a crash compared to more experienced drivers. If the blood 

alcohol content limit is set at 0.10 g/dl, the risk of a crash becomes three times higher 

than at 0.05 g/dl, and even at 0.05 g/dl, there is still twice the risk compared to a blood 

alcohol content of zero. 

 Daisa and Peers (1997) stated that narrower streets can be affected by 

emergency vehicles, garbage trucks, and other large vehicles, which can reduce the 

visibility of drivers and make it difficult to see children playing between cars near a 

street. The Global Designing Cities Initiative has highlighted that narrow lanes can 

help reduce speeds and minimize crashes on city streets by making drivers more 

cautious about traffic and the presence of other road users. 

 In high-income countries, all vehicles are required to adhere to standard safety 

regulations, including the installation of seat belts, airbags, and other safety features. 

However, low-income countries often lack these standard safety regulations, which 

puts pedestrians, motorcyclists, and cyclists at a higher risk of road traffic accidents 

(RTAs) (WHO, 2009). Additionally, there are several faults that can be found in 

vehicles, which have the potential to cause serious injuries and fatalities. Some of 

these faults include: 

 

(i) Defective Headlight and Taillights 

 Drivers rely primarily on their headlights to ensure visibility at night. It is 

crucial that headlights are in proper working condition during nighttime driving. If the 
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headlights are faulty and fail to provide adequate illumination, it poses a significant 

danger to both the driver and other individuals on the road (The Carlson Law Firm, 

2020). 

 

(ii) Defective Tyres 

 Defective tires can result in the driver losing control of the vehicle. There are 

several factors that can contribute to defective tires, including low air pressure, 

overloading of vehicles, and manufacturing defects in the tires themselves (Shen et 

al., 2013). 

 

(iii) Airbags Fail 

 When a car accident occurs and the airbags fail to deploy, drivers and 

passengers may experience severe injuries. Improper deployment of airbags can lead 

to serious injuries from the airbag propellant or even result in death (Gale, 2018). 

 

(iv)  Non-use of Motorcycle Helmets 

 The primary risk factor for users of motorized two-wheelers is the failure to 

wear motorcycle helmets. Studies have demonstrated that the absence or improper use 

of helmets significantly increases the risk of fatalities and injuries in road crashes 

involving motorized two-wheelers (WHO, 2006). Head injuries are the leading cause 

of death, injury, and major trauma for individuals using two- and three-wheeled motor 

vehicles (WHO, 2015). Wearing a motorcycle helmet can reduce the risk of death by 

nearly 40% and the risk of severe injury by approximately 70%. Strict enforcement of 

motorcycle helmet laws can improve helmet-wearing rates and thereby decrease head 

injuries (WHO, 2015). 

 

(v) Non-use of Seat-Belt  

 According to the CDC, more than half of the individuals who were killed in 

car crashes were not wearing seat belts at the time of the accident. Wearing a seat belt 

is the most effective way to prevent death and serious injury in a crash. Seat belts 

have a significant impact in reducing the risk of death and serious injury. For drivers 

and front-seat passengers, seat belts reduce the risk of death by 45% and the risk of 

serious injury by 50%. The Global Health Observatory reports that wearing a seat belt 

reduces the risk of fatality by 40-50% for front passengers and by 25-75% for rear-
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seat car occupants. Seat belt laws are widespread globally, with 87% of countries 

implementing them. However, only 38% of low-income countries and 54% of high-

income countries require seat belts to be used by both front and rear seat passengers. 

Twelve percent of countries have no seat belt laws at all (WHO, 2020). 

 According to the Global Status Report on Road Safety, wearing a seat belt can 

reduce the risk of death by 45-50% among drivers and front seat occupants, and 

reduce the risk of death and serious injuries by 25% among rear seat occupants. In 

2014, seven countries made changes to their seat belt legislation to enhance road 

safety. Child restraints are highly effective in reducing injuries and deaths among 

child occupants. The use of child restraints can lead to a reduction in deaths by at least 

60%. Child restraint laws typically include requirements such as placing children in a 

child restraint until they are at least 10 years of age or 135 cm in height, restrictions 

on seating children in the front seat, and reference to safety standards for child 

restraints. Currently, 84 countries have national child restraint laws in place. Since 

2014, four countries have made amendments to their legislation regarding the use of 

child restraints (WHO, 2018). 

 

2.7       Global Road Safety Measures 

 Various interventions and plans have been implemented by countries over the 

years to improve road safety. Legislation plays a crucial role in providing 

opportunities for researchers to contribute to road safety efforts. According to the 

ASEAN Regional Road Safety Strategy (ADB, 2016), a significant number of people, 

approximately 75,000, are killed in road crashes in ASEAN countries, and many more 

suffer long-term injuries. Each ASEAN country has achieved different levels of 

maturity in their response to road trauma.  Initiatives under the Kuala Lumpur 

Transport Strategic Plan (KLTSP) 2016-2025 aim to reduce road fatalities by 50% in 

AMS (ASEAN Member States) by 2020 and by an additional 25% from 2021 to 

2030. These initiatives also focus on aligning the implementation with the five pillars 

of the UN Decade of Action for Road Safety and intensifying regional cooperation to 

improve transport safety. 

 In 2018, the World Health Organization (WHO) published a report titled 

"Global Status Report on Road Safety." The report provided a comprehensive 

assessment of the road safety situation in 175 countries. According to the report, road 

traffic crashes continue to pose a significant global problem, with no significant 
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change expected in the near future. The global rate of road traffic deaths stands at 

18.2 per 100,000 population, but there is substantial variation among different regions 

worldwide. In Africa and South-East Asia, the rates of road traffic deaths are the 

highest, with 26.6 and 20.7 deaths per 100,000 population, respectively. The Eastern 

Mediterranean and Western Pacific regions have rates comparable to the global 

average, with 18 and 16.9 deaths per 100,000 population, respectively. The Americas 

and Europe have the lowest regional rates, with 15.6 and 9.3 deaths per 100,000 

population, respectively. There is a greater challenge in reducing the number of road 

traffic deaths in low-income countries compared to middle- and high-income 

countries. On average, low-income countries have a death rate of 27.5 per 100,000 

population, which is more than three times higher than the average rate of 8.3 deaths 

per 100,000 population in high-income countries. 

 According to the Global Status Report on Road Safety, implementing and 

enforcing legislation regarding key risk factors such as speed, drink driving, and the 

use of motorcycle helmets, seat-belts, and child restraints are crucial for preventing 

road traffic deaths. In 2014, twenty-two countries made amendments to their laws 

pertaining to one or more of these risk factors. Head injuries are the primary cause of 

death and severe trauma for users of two- and three-wheeled motor vehicles. Proper 

helmet use can reduce the risk of fatal injuries by 42% and the risk of head injuries by 

69%. Since 2014, five countries have made changes to their existing legislation in this 

regard. It is worth noting that only 63 countries have specific regulations in place to 

restrict child passengers on motorcycles (WHO, 2018). 

 Exceeding the speed limit has a detrimental impact on road safety. One 

important measure to address this issue is the establishment of national speed limits. 

According to the Global Status Report on Road Safety, setting national speed limits is 

a crucial step in reducing speed-related accidents. It recommends that maximum 

urban speed limits should be set at or below 50 km/h, following best practices (WHO, 

2018). In Myanmar, speed limits are determined at the national level, with a 

maximum speed of 100 km/h on highways. In urban areas, the maximum speed limit 

is set at 48 km/h, and local authorities are not permitted to set lower speed limit zones.

 According to the World Bank Mission (2019), road fatalities and injuries are 

not only a human tragedy but also a significant threat to socioeconomic development. 

The World Bank, in collaboration with the Global Road Safety Facility, is actively 

engaged in addressing all aspects of the road safety challenge, including road design, 
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vehicle standards, and institutional measures, to protect lives on the road. Road 

safety-related fatalities and injuries present a formidable obstacle to global 

development. In 2021, the WHO launched the Decade of Action for Road Safety 

2021-2030, which sets an ambitious goal of reducing road traffic deaths and injuries 

by at least 50% by 2030 (WHO, 2021). 

 Hassouna and Pringle (2021) conducted an analysis to predict the crash 

fatalities in Australia. The research was divided into two parts. In the first part, road 

fatalities data from 2008 to 2017 were analyzed based on gender, age, and type of 

road users. The results were compared with global averages of road fatalities to assess 

the effectiveness of Australian road safety strategies. The findings revealed that male 

road fatalities, over-speeding, and drivers and passengers of 4-wheel vehicles had the 

highest fatality rates. In the second part, annual data for road fatalities in Australia 

spanning 53 years (1965-2008) were analyzed. The researchers employed the ARIMA 

model to forecast road fatalities. Among the time series models tested, the ARIMA (2, 

2, 2) model yielded the lowest values for RMSE and MAPE, indicating better 

predictive performance. Therefore, this model was selected as the best fitted model to 

forecast, the number of road fatalities for the next five years (2019-2023) was 

forecasted. 

 

2.8     Road Safety Laws, Targets and Measures in Myanmar 

 Road traffic safety encompasses various strategies and measures aimed at 

preventing fatalities and serious injuries among road users. In Myanmar, there is a 

rapid growth in motorization, leading to a significant rise in the number of accidents 

and casualties. This situation highlights the urgent need for comprehensive efforts to 

improve road safety. Immediate and substantial action, along with adequate funding, 

is crucial to establish effective management systems (FIA, 2017). Developing the 

necessary knowledge and expertise to implement essential interventions in Myanmar 

is imperative. This section provides an overview of diverse road safety measures, 

including laws, regulations, programs, and action plans aimed at enhancing road 

safety in the country. 
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2.8.1 Legislations on the Road Traffic Safety 

 According to the Myanmar Law Library (2015), Myanmar has implemented 

several road safety measures to enhance road safety within the country. These 

measures include the enactment of laws, rules, regulations, and safety programs that 

have been incorporated into road safety plans. These efforts reflect the commitment of 

Myanmar towards improving road safety and reducing the number of accidents and 

injuries on its roads. 

(1)  The Myanmar Motor Vehicle Act was established through three sections in 

1906. 

(2)  In 1914, the British Government introduced the Indian Motor Vehicle Act No. 

8, which became effective in Myanmar. 

(3)  The Myanmar Motor Vehicle Law was enacted in 1915. 

(4)  The Myanmar Taxi Law was passed in 1935. 

(5)  In 1963, the Road and Inland Water Transport Law was promulgated. 

(6)  The 1964 Motor Vehicle Law was established as the Revolutionary Council 

Law No. 17 in 1964. 

(7)  The existing 1989 Motor Vehicle Law was promulgated through Notification  

 No.(1/89) of the Ministry of Transport and Communication in 1989. 

(8)  The Motor Vehicle Registration Procedures of 1994 were issued for the 

issuance of driver's licenses. 

(9)  The Motor Vehicle Law of 2015 was approved as Pyidaungsu Hluttaw Law 

No. 55 and came into effect on September 7, 2015. 

(10) The Road Transport Law of 2016 was enacted as Pyidaungsu Hluttaw Law 

No. 7 and came into force on January 5, 2016. 

(11) The Vehicle Safety and Vehicle Management Law of 2020 was promulgated 

as Pyidaungsu Hluttaw Law No. 6 and came into effect on May 26, 2020 

 

2.8.2 Motor Vehicle Law 

 The 2015 Motor Vehicle Law (Union Parliament Law No. 55) was enforced 

on September 7th with approval by Pyidaungsu Hluttaw Law. The 2015 Motor 

Vehicle Law served as an amendment to the 1964 Motor Vehicle Law and is 

comprised of 14 chapters. These chapters include Title and Definition, Objective, 

Registration of a Motor Vehicle, Temporary Suspension and Cancellation of the 
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Registration of a Motor Vehicle, Issuance, Refusal, Temporary Suspension, 

Cancellation, and Permanent Revocation of the Driving License, the Certificate of a 

Spare Man, and the Training School Business License, Importation, Manufacturing, 

Selling, Installation, Maintenance, and Inspection of a Motor Vehicle, Powers of the 

Ministry, Powers of the Department, Prohibitions, Penalties, Payment for Indemnity, 

Maintenance of Discipline and Taking Action, Matters in the Issue of Rules, and 

Miscellaneous. This law prohibits over-speeding or under-speeding of a motor 

vehicle, driving under the influence of drugs or alcohol as described in Section 49, 

and mandates the use of motorcycle helmets while riding a motorcycle, as well as the 

fitting of driver and passenger seat belts while driving as outlined in Section 54. 

 

2.8.3 Vehicle Safety and Motor Vehicle Management Law 

 The Vehicle Safety and Motor Vehicle Management Law (Union Parliament 

Law No. 6) were enacted on May 26th, 2020. The Vehicle Safety and Motor Vehicle 

Management Law (2020) consists of 15 chapters, including Title and Definition, 

Objective, Establishment and Duties of the National Road Council and Region or 

Union Area Road Safety Council, Powers and Duties of the Ministry, Powers and 

Duties of the Department, Registration of a Motor Vehicle, Driving and Spare Man 

Licenses, Business License, Appeal, Compensation Payment, Payment for Indemnity, 

Maintenance of Discipline and Taking Action, Setting up Fund, Receipt, Use, 

Maintenance and Management, Prohibitions, Penalties, and Miscellaneous. This law 

outlines the rules to be followed while driving as described in Section 75, the rules to 

be followed by motorcycle riders in Section 76, and regulations regarding speeding of 

a motor vehicle, speed limits, and driving under the influence of drugs or alcohol as 

stated in Section 77. 

 

2.8.4 National Road Safety Action Plans 

 According to Zaw (2013), the Traffic Rules Enforcement Supervisory 

Committee (TRESC) was established with the aim of implementing road safety 

measures and reducing road traffic accidents in 1989. This committee was formed 

with the participation of various organizations and departments responsible for road 

safety. The organizations and departments involved as responsible bodies under the 

Traffic Rules Enforcement Supervisory Committee are as follows: 
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(1) Myanmar Police Force 

(2) Road Transport Administration Department 

(3) Department of Health 

(4) Public Works 

(5) City Development Committees 

(6) Ministry of Education 

(7) Ministry of Information 

 Furthermore, the Road Transport Administration Department (RTAD) under 

the Ministry of Rail Transportation plays a crucial role in ensuring road safety in the 

country. RTAD is primarily responsible for vehicle registration, issuing driving 

licenses, and implementing traffic legislation. In addition to RTAD, the National 

Road Safety Council (NRSC) was established in mid-2014. The NRSC consists of 25 

members who are involved in promoting and implementing road safety measures. The 

members of the NRSC are described as follows: 

(1) Ministry of Information 

(2) Ministry of Natural Resources and Environmental Conservation 

(3) Ministry of Education 

(4) Ministry of Health and Sports 

(5) Ministry of Planning and Finance 

(6) Ministry of Construction 

(7) The Union Attorney-General 

(8) Region and Chief Minister 

(9) The Mayors of Yangon, Mandalay and Nay Pyi Taw 

(10) The Permanent Secretary of the Ministry of Transport and Communications 

(11) The Chief of the Myanmar Police Force 

(12) The Chairperson of the Lower House Transport, Communication and 

Construction  

(13) The President of the Union of Myanmar Federation of Chambers of    

Commerce and Industry 

(14) The President of the Myanmar Engineering  

(15) The Chairperson of the All Bus Lines Control Commit 

 The main duties of the National Road Safety Council (NRSC) include 

assigning responsibilities to relevant departments and organizations to ensure the 

effective implementation of the tasks outlined in the Myanmar Road Safety Action 
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Plan (MRSAP) (2014-2020). Myanmar has developed its own National Road Safety 

Action Plan, which is aligned with the UN Resolution on road safety and the road 

safety guidelines of the Asian Development Bank (ADB). The Myanmar National 

Road Safety Plan sets the following targets: 

(1) To reduce the annual growth rate of road crashes in order to halve the 2014 

level of fatalities by 2020  

(2) To reduce the fertility rate per 10,000 vehicles by 50% by 2020 from the 2013 

level of 9.26 

(3) To achieve a 90% motorcycle-helmet-wearing rate all over the country 

(4) To achieve a 70% seat-belt-wearing rate all over the country 

(5) To eliminate illegal driving 

 

2.8.5  National Road Safety Activities 

  Road safety activities have played a crucial role in saving many lives by 

reducing the annual fatalities caused by road accidents, with the aim of halving the 

current death rate from 2014 to 2020. These activities include implementing a 

mandatory 100% usage of motorcycle helmets and seat belts nationwide, cracking 

down on illegal driving without a driver's license, conducting educational sessions for 

motorcyclists to enhance their understanding of motor vehicle laws, rules, and 

regulations. To ensure better enforcement, the Motor Vehicle Law has been expanded 

to cover all sectors related to road safety, including conducting educative talks to raise 

awareness about the new Motor Vehicle Law and implementing driver testing systems 

in line with international standards. Furthermore, various other measures have been 

implemented to enhance road safety, such as public campaigns, increased 

enforcement efforts combined with education, regulations to encourage drivers to 

comply with laws, rules, and regulations, collaboration with the private sector to 

promote road safety through activities like cartoon competitions, road safety talks, 

and public awareness campaigns. The new Motor Vehicle Law includes provisions 

mandating the use of motorcycle helmets for both riders and pillion riders, as well as 

requiring motorcycles to keep their lights on while driving, even during daytime. 

 

2.8.6 Second Decade of Action for Road Safety (2021-2030) 

 Khin (2022) stated that during the administration of the State Administrative 

Council (SAC), the newly established National Road Safety Council (NRSC) was 
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formed. The NRSC comprised four sub-committees, namely the Management Sub-

Committee, Education and Inspecting Sub-Committee, Research and Health Sub-

Committee, and Finance Sub-Committee. Additionally, task forces and state and 

regional NRSCs were established to support the implementation of the National Road 

Safety Action Plan (NRSAP, 2021-2030). The NRSAP is divided into eight sectors 

and is described as follows: 

Sector (1): Management for Road Safety Institution, Measures, Human Resources and 

Financial Resources 

Sector (2): Guidelines for Road Traffic Safety 

Sector (3): Safer Vehicles 

Sector (4): Safer Road and Mobility 

Sector (5): Safer Road Users 

Sector (6): Post – Crash Response 

Sector (7): Raising Awareness, Educating and Law Enforcing for Road Safety 

Sector (8): Road Accident Data Collection and Research 

 The targets of the Myanmar National Road Safety Action Plan (2021 – 2030) 

are 

(1) 50% reduction of road fatalities by 2030 using 2020 baseline 

(2) 100% use of motorcycle helmet and 

(3) 100% use of seat – belt. 

 

2.9 Conceptual Framework of Road Traffic Accidents and Casualties 

 Numerous authors have explored multiple risk factors in the context of traffic 

accidents and casualties. This study adopts a conceptual framework inspired by the 

works of Awal (2013), Katta (2013), and Eboli et al. (2020). The framework serves as 

the basis for investigating and comprehending the interplay between various factors in 

relation to traffic incidents. The conceptual framework built in this study depicts how 

the road traffic accidents and its consequences of casualties are influenced by the risk 

factors such as gender, place of accident, type of vehicles, time of accident and 

immediate causes of accident. Conceptual framework for traffic accidents and 

casualties are described in Figure (2.1). 
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Modelling Index 

             Logistic Regression 

     ARIMA with Intervention 

     ARIMAX-TFM 

IMMEDIATE OF CAUSES 

❖ Over-speeding 

❖ Reckless driving 

❖ Pedestrian negligence 

INTERVENTION 

❖ Motor vehicles law 

❖ Permission to import vehicles law 

❖ Vehicle safety and motor vehicles 

management law 

❖ Political changes and Covid-19 Pandemic 

Traffic Casualties 

(Fatalities & Injuries) 

Traffic Accidents 

RISK FACTOR 

❖ Gender 

❖ Place of Accident 

❖ Type of Vehicles 

❖ Time of Accident 

❖ Immediate Causes of Accident 

❖ Alcohol Consumption 

 

❖  

         Figure (2.1)   Conceptual Framework for Traffic Accidents and Casualties  

3
3
 



 

 

34 

 In this framework, the independent variables encompass several risk factors 

associated with traffic accidents, including gender (male, female), place of accident 

(junction, roundabout, main road, lane, on bridge), type of vehicles (private car, 

buses, trucks, taxi, motorcycle, other vehicles), time of accident (day, night), 

immediate causes of accident (human error, failure to comply with regulations, 

mechanical faults and weather conditions) and alcohol consumption (yes, no). The 

dependent variables are the number of traffic fatalities and injuries, representing the 

number of deaths and injuries resulting from traffic accidents.  

 The conceptual framework suggests that the identified risk factors can 

influence the occurrence and severity of traffic accidents, leading to varying levels of 

traffic fatalities and injuries. The studies have highlighted different impact factors 

contributing to traffic accidents and casualties, such as over-speeding, reckless 

driving, and pedestrian negligence, are employed as independent variables. 

Additionally, intervention variables encompass factors that can influence traffic 

accidents and casualties, such as motor vehicle laws, permission to import vehicle 

laws, motor vehicle management laws, political changes, and the Covid-19 pandemic. 

These intervention variables may play a role in affecting the occurrence of traffic 

incidents.  

 In summary, the presented framework utilizes figures to illustrate the 

relationship between the dependent variables (traffic accidents and casualties) and the 

risk factors, as well as the impact factors and intervention variables, which 

collectively contribute to a comprehensive understanding of the dynamics involved in 

traffic incidents. 

 The arrows in the framework signify the potential influence or relationship 

between the risk factors, impact factors and the dependent variables. The framework 

implies that alterations in the independent variables could affect the incidence of 

traffic accidents and the number of casualties. It is essential to note that this 

representation is simplified and tailored to the specific context and research objectives 

of the study. 
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CHAPTER III 

METHODOLOGY 

 

 This chapter presents in detail the statistical methods used to analyze the 

number of road traffic accidents, fatalities, and injuries. It describes logistic regression 

and the basic concepts of time series modeling that are involved in the application of 

autoregressive integrated moving average (ARIMA), intervention, and autoregressive 

integrated moving average with explanatory variables-transfer function (ARIMAX-

TFM) models in this study. 

 

3.1 Logistic Regression 

 Regression methods are applied to analyze the relationship between a response 

variable and one or more explanatory variables. Linear regression is used to predict 

the mean value of the response variable. When the outcome variable is discrete and 

can take on two or more possible values, the logistic regression model is the most 

frequently used regression model for analysis (Hosmer et al., 2013). Logistic 

regression allows for non-linear relationships between the dependent and independent 

variables by applying a non-linear transformation using log transformation. 

 Logistic regression is used to predict a categorical (usually dichotomous) 

variable from a set of predictor variables. The dependent variable was dichotomous 

and the predictors were a mixture of continuous and categorical variables, logistic 

regression is employed. The logistic regression has two models; they are binary 

logistic regression and multinomial logistic regression. In a binary logistic regression 

model, the dependent variable has two levels (categorical). Outputs with more than 

two values are modeled by multinomial logistic regression, if the multiple categories 

are ordered, by ordinal logistic regression. 

 

3.1.1 Binary Logistic Regression Model 

 The logistic regression is used to obtain odds ratio in the presence of more 

than one explanatory variable. They are analyzed the relationship between a binary 
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dependent variable and a set of independent or explanatory variables. A binary 

regression model is used to understand how changes in the predictor values are 

associated with changes in the probability of an event occurring. The dependent 

variable is the probability (𝜋𝑖), the resulting outcome is equal 1. Parameter obtained 

for the independent variables can be used to estimate odds ratio for each of the 

independent variables in the model. For the binary dependent variable Y, denotes its 

categories by 1 and 0. It used the geometric term success and failure for the two 

outcomes.  

 Odds of an event are the ratio of the probability that an event will occur to the 

probability that it will not occur. If the probability of an event occurring is 𝜋𝑖, the 

probability of the event not occurring is (1-𝜋𝑖). Then, the expressed in terms of odds 

is 

Odds = 
𝜋𝑖

1−𝜋𝑖
 

 However, the logit transformation of the odds, or likelihood ratio that, 

dependent variable is 1, such that 

        Logit (𝑌) = ln (odds) = ln (
𝜋𝑖

1−𝜋𝑖
)  

                                      = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 ; i =  1, 2,⋯ , 𝑝                (3.1) 

where  𝜋𝑖 = probability (Y = outcome of interest|𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ⋯ , 𝑋𝑝 = 𝑥𝑝), 

𝑥𝑖 = the explanatory variables and 

            𝛽0, 𝛽1, ⋯ , 𝛽𝑝 = parameters of the logistic regression 

 The probability occurrence of interested outcome as  

              E(𝑌|𝑥𝑖 ) =  𝜋𝑖 = 
𝑒𝛽0+𝛽𝑖𝑥𝑖

1+𝑒𝛽0+𝛽𝑖𝑥𝑖
 

where  E(𝑌|𝑥𝑖) is viewed as a conditional mean, given the value of  𝑥𝑖. 

 

3.1.2 Assumptions of Binary Logistic Regression Model 

 According to Field (2013), binary logistic regression is a statistical method 

used to analyze the relationship between a binary outcome variable (such as 0 or 1) 

and one or more predictor variables. In order to use binary logistic regression, several 

assumptions should be met; 

(i) The outcome variable should be dichotomous or binary, meaning it can only 

take two values (e.g., yes or no, success or failure, alive or dead). 
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(ii) Each observation in the sample should be independent of other observations. 

This means that each observation should be unique and not influenced by 

other observations in the sample. 

(iii) The relationship between the predictor variables and the logit of the outcome 

variable should be linear. The logit is the natural logarithm of the odds of the 

outcome variable being equal to 1. 

(iv) The predictor variables should not be highly correlated with each other. This is 

because multicollinearity can make it difficult to determine the independent 

effect of each predictor variable on the outcome variable. 

(v) A large sample size is generally required for logistic regression to provide 

accurate estimates of the coefficients. 

(vi) The sample should not contain any extreme outliers that can have a 

disproportionate effect on the model. 

(vii) There should be no influential observations, which are observations that can 

have a significant effect on the results of the model.  

 

3.1.3 Statistical Test for Coefficients 

 Coefficients are tested for significance for inclusion or elimination from the 

model involves several different techniques. Each of the tests will be explained as 

follows: 

 

Likelihood Ratio Test 

 The likelihood ratio test determined the ratio of the maximum value the 

likelihood of the data with all parameters unrestricted (𝐿1) over the maximum value of 

the likelihood when the parameters are restricted (𝐿0). The formula for the likelihood 

test statistic is: 

 LR = -2ln (
𝐿0

𝐿1
) = -2 [ln (𝐿0) – ln (𝐿1)] = -2 [𝐿 − 𝐿1]                (3.2) 

where   𝐿 =  ln(𝐿0) and 

 𝐿1 =  ln(𝐿1) 

 

Wald Test 

 Wald test is used to determine whether a certain predictor variable x is 

significant or not. Wald test calculate a square of Z statistic. The Wald statistic 

follows a chi-square distribution. The Wald test is to find out if explanatory variables 
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in a model are significant. Significant means that add something to the model; 

variables that add nothing can be deleted without affecting the model. The test can be 

used for a multitude of different models including those with binary variables or 

continuous variables. The formula for the Wald test is 

  W = 
�̂�𝑖

𝑆𝐸(̂�̂�𝑖)
             (3.3) 

where   �̂�𝑖 = the maximum likelihood estimate of the slope parameter and 

 𝑆𝐸(̂�̂�𝑖) = estimate of its standard error 

 

Hosmer-Lemeshow Test 

 Hosmer and Lemeshow proposed grouping based on the values of the 

estimated probabilities. The Hosmer-Lemeshow statistic evaluates the goodness-of-fit 

test. This test is used 10 groups of subjects and then compares the number actually in 

the each group (observed) to the number predicted by the logistic regression model 

(predicted). The first group contains all subjects whose estimated probability is less 

than or equal to 0.1, while the tenth group contains those subjects whose estimated 

probability is greater than 0.9. The Hosmer-Lemeshow goodness-of-fit statistic,�̂�, is 

obtained by calculating the Pearson chi-square statistic of observed and expected 

frequencies. The calculation of �̂� is as follows: 

 �̂� = ∑
(𝑜𝑖𝑘−𝑛𝑘

ʹ �̅�𝑘)2

𝑛𝑘
ʹ �̅�𝑘(1−�̅�𝑘)

𝑔
𝑘=1 ,  oik = ∑ 𝑌𝑗

𝑐𝑘
𝑗=1              (3.4) 

where  oik = the sum of independent nonidentically distributed random variables 

            𝑛𝑘
ʹ  = the total number of subjects in the kth group, 

 �̅�𝑘 = the average estimated probability in the kth group and  

 �̂� is based on the percentile-type of grouping, usually with 10 groups. These 

groups are referred to as the “deciles of risk”.  

 

3.2 The Box-Jenkins Methodology 

 In 1970, George Box and Gwilym Jenkins was a great popularized in research 

on time series analysis and forecasting. While the forecasting technique they 

described as an Autoregressive Integrated Moving Average (ARIMA) model or the 

“Box- Jenkins model”. Several approaches can be used to forecast a time series such 

as exponential smoothing, decomposition into trend, seasonal and irregular 
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components, regression models, and ARIMA models including Autoregressive 

Integrated Moving Average with Explanatory Variable (ARIMAX). These approaches 

can be classified into univariate and multivariate analyses. 

 

3.2.1 Autoregressive (AR) Model 

 An autoregressive process of order p is given by 

  𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡          (3.5) 

where   𝑌𝑡 = response variable at time t 

 𝑌𝑡−1, 𝑌𝑡−2, ⋯ , 𝑌𝑡−𝑝 = response variables at time lags t-1, t-2, …, t-p, respectively, 

 𝜙1, 𝜙2, ⋯ , 𝜙𝑝 = coefficients to be estimated and 

 𝑒𝑡  = error term at time t. 

 Equation (3.5) has the appearance of a regression model with lagged values of 

the dependent variable in the independent variable positions. AR models are 

appropriate for stationary time series. In a stationary time series, the autocorrelation 

coefficients will often tail off to zero, whereas the partial autocorrelation coefficients 

will decrease to zero after the second time lag. Moreover, the sample autocorrelation 

functions will differ from the theoretical functions due to sampling variation. The 

forecasts of autoregressive models generally depend on the observed values in 

pervious time periods. For AR (1) model, the forecasts of the next value depend on 

the observations of a pervious time period. For AR (2) models, the forecasts of the 

next value depend on the observations for two pervious time periods, and so forth.  

 

Autocorrelation Function of the AR (p) Process 

 The ACF of an AR (p) process is given by 

 γk =  𝜙1𝛾𝑘−1  + ⋯ + 𝜙𝑝𝛾𝑘−𝑝 , 𝑘 > 0 

 ρ𝒌 =  ϕ1ρk−1 + ⋯ + ϕpρk−p , k > 0 

The ACF ( )K  is determined by the difference equation, 

 ϕp(B)ρ
k

= (1 − ϕ1B − ⋯ − 𝜙pBP)ρ
k

= 0,     k > 0. 

Now, ϕp(B) can be written as 

  ϕp(B) = ∏ (1 − GiB)dim
i=1  

where, ∑ id𝑚
𝑖 =p and  𝐺𝑖

−1 (i=1,2,...,m) are the roots of multiplicity id  of 𝜙𝑝 (B)= 0. 
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Using the difference equations results, as follows, 
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If 1=id for all 𝐺𝑖
−1 , are all distinct and the above reduces to 

 .0,
1

=
=

kGb
p

i

k

iik                                       (3.6) 

For a stationary process, 11 −

iG  and, .1iG  The ACF k  tails off as a mixture of 

exponential decays or damped sine waves depending on the roots of  𝜙𝑝(B)= 0. 

Damped sine waves appear if some roots are complex. 

 

Partial Autocorrelation Function of the AR (p) Process   

The autocorrelation function of the AR (p) process is given by  

k =𝜙1 1−k  +𝜙2𝜌𝑘−2++𝜙𝑝 pk−
 
for k 0,  

it can obviously be seen that when k  p, the PACF 𝜙𝑘𝑘 will vanish after lag p. 

 

3.2.2 Moving Average (MA) Model 

 The mathematical representation of the qth order MA model is given by 

  𝑌𝑡 =  𝑎𝑡 − 𝜃1𝑎𝑡−1 − 𝜃2𝑎𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞              (3.7) 

where  𝑌𝑡 = Response variable at time t 

𝜃1, 𝜃2, ⋯ , 𝜃𝑞 = Coefficients to be estimated 

𝑒𝑡−1, 𝑒𝑡−2, ⋯ , 𝑒𝑡−𝑞 = Errors in pervious time period that are incorporated in 

response 𝑌𝑡 at the time 

  It can be seen from both autoregressive and moving average models that the 

dependent variable 𝑌𝑡 depends on previous values of the errors rather than on the 

variable itself. The 𝑌𝑡  forecast by MA models is based on a linear combination of a 

finite number of past errors. In constant, the 𝑌𝑡 forecast by AR models is a linear 

function of a finite number of past values of 𝑌𝑡.  

 

Autocorrelation Function of the MA (q) Process 

 The autocorrelation function of the MA (q) process is given by 

           𝜌𝑘 =  {

−𝜃𝑘+𝜃1𝜃𝑘+1+⋯+𝜃𝑞−𝑘𝜃𝑞

1+𝜃1
2+⋯+𝜃𝑞

2 ,   𝑘 = 1,2, ⋯ , 𝑞

0                      ,   𝑘 > 𝑞
             (3.8) 
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    The autocorrelation function of an MA (q) process cuts off after lag q. This 

important property enables us to identify whether a given time series is generated by a 

moving average process. 

 

Partial Autocorrelation Function of the MA (q) Process 

The Partial autocorrelation function of the MA (q) process tails off as a 

mixture of exponential decays on the nature of the roots of ( ) 01 1 =−−− q

q BB   . 

 

3.2.3 White Noise Process 

 A stationary process is a sequence of independent and identically distributed 

random variables. Randomness or white noise (𝑒𝑡) have the following characteristics: 

(1) 𝐸(𝑒𝑡) = 0 

(2) 𝑉(𝑒𝑡) = 𝐸(𝑒𝑡
2) =  𝜎2  

(3) 𝛾𝑘 = 𝐶𝑜𝑣(𝑒𝑡, 𝑒𝑡+𝑘) = 0 for all k≠0 

 

3.2.4    Stationarity 

 A stationary process is a stochastic process in which the unconditional joint 

probability distribution remains unchanged when shifted in time. A time series is 

considered stationary when there is no systematic change in its mean (no trend), and 

variations in variance and strictly periodic patterns have been eliminated. Increasing 

the value of the time origin 'm' does not impact the joint distribution, which should be 

dependent on the time interval. A time series is categorized as stationary if the joint 

probability distribution of 𝑌𝑡1
, 𝑌2, … , 𝑌𝑡𝑚

 is the same as the joint distribution of 

𝑌𝑡1+𝑘
, 𝑌𝑡2+𝑘

, … , 𝑌𝑡𝑚+𝑘
 for all 𝑡1, 𝑡2, … , 𝑡𝑚. 

 For strict stationarity, a process must exhibit a probability structure that solely 

relies on time differences. A less stringent condition, referred to as weak stationarity, 

indicates that the statistical properties of the process are solely dependent on time 

differences. For a process {𝑌𝑡} to be considered weakly stationary or second-order 

stationary, it must satisfy the following conditions: 

(1) Mean: 𝐸(𝑌𝑡) = μ 

(2) Variance: [𝐸(𝑌𝑡 − 𝜇)2] =  𝜎2 

(3) Autocovariance:  Cov (𝑌𝑡, 𝑌𝑡+𝑘) = [𝐸(𝑌𝑡 − 𝜇)(𝑌𝑡+𝑘 − 𝜇) = 𝛾𝑘            
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3.2.5  Augmented Dickey-Fuller Test 

  Augmented Dickey-Fuller (ADF) test is introduced by Fuller (1976) and 

Dickey and Fuller (1979). According to Enders (2015), the ADF test is an extension 

of the Dickey-Fuller test, which removes autocorrelation from the series and then tests 

similar to the procedure of the Dickey-Fuller test.  The ADF test is most commonly 

used for verifying nonstationary in the original time series. The ADF test is 

fundamentally a statistical significance test. The test poses the null hypothesis, the 

given time series data has nonstationarity, it has a unit root problem. Before run an 

ADF test, to find out an appropriate regression model. Three different regression 

equations that can be used to test for the presence of a unit root:  

(i) ∆𝑌𝑡 =  𝜙𝑌𝑡−1 + 𝑒𝑡  test for a unit root 

(ii) ∆𝑌𝑡 =  𝛼 + 𝜙𝑌𝑡−1 + 𝑒𝑡 test for a unit root with constant 

(iii)∆𝑌𝑡 =  𝛼 + 𝜙𝑌𝑡−1 + 𝛿𝑡 + 𝑒 test for a unit root with the constant and        

deterministic trends with time 

The Augmented Dickey-Fuller adds lagged differences to these models: 

(i) ∆𝑌𝑡 =  𝜙𝑌𝑡−1 + ∑ 𝜑𝑗
𝑝−1
𝑗=1 ∆𝑌𝑡−𝑗 + 𝑒𝑡              (3.9) 

(ii) ∆𝑌𝑡 =  𝛼 + 𝜙𝑌𝑡−1 + ∑ 𝜑𝑗∆𝑌𝑡−𝑗
𝑝−1
𝑗=1 + 𝑒𝑡            (3.10) 

      (iii) ∆𝑌𝑡 =  𝛼 + 𝜙𝑌𝑡−1 + 𝛿𝑡 + ∑ 𝜑𝑗
𝑝−1
𝑗=1 ∆𝑌𝑡−𝑗+𝑒𝑡            (3.11) 

 Tests including lagged changes are called augmented Dickey-Fuller tests. The 

hypotheses for the test are 

           𝐻0 ∶  𝜙 = 1 (There is unit root) 

             𝐻1 ∶ |𝜙 | < 1 (There is no unit root) 

Test statistics is 

   T = 
�̂�−1

𝑆�̂�

            (3.12) 

where  �̂� = the least squares estimate and 

  𝑆�̂� = the standard error estimate 

In general, the p value obtained by the test should be less than the significance alpha 

value to reject the null hypothesis.  
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3.2.6  Differencing 

 Differencing can help stabilize the mean of a time series by removing changes 

in the level of a time series, and so eliminating (or reducing) trend and seasonality. 

Differencing is performed by subtracting the previous observation from current 

observation. Taking the difference between consecutive observations is called a lag-1 

difference. The lag-1 difference can be adjusted to suit the specific temporal structure. 

For time series with a seasonal component, the lag may be expected to be the period 

of the seasonality. For a nonlinear trend, some temporal structure may still exist after 

performing a differencing operation. The process of differencing can be repeated 

more than once until all temporal dependence has been removed. The number of times 

that differencing is performed is called the difference order. 

 

3.2.7  Variance Stabilizing Techniques 

 Given the inherent non-stationarity of many economic time series, it becomes 

essential to achieve stationarity prior to constructing any model. Non-stationary time 

series encompass elements such as time trends, random walks, and seasonality. If a 

time series is non-stationary in terms of variances, applying a logarithm or square root 

transformation can help stabilize the variance. The logarithmic transformation is 

frequently employed when the variability within the original time series increases 

proportionally with the series' average level. In scenarios where the original series 

exhibits a linear increase in standard deviation along with the mean, the logarithmic 

transformation emerges as an optimal approach to stabilize the variance.   

 A Box-Cox transformation is a way to transform non-normal dependent 

variables into a normal shape. Box-Cox transformation is the used of variance-

stabilizing transformation technique. This transformation changes the variance of the 

residuals into a constant. The Box-Cox transformation is given by:       

     𝑌𝑡 = { 
𝑌𝑡

𝜆−1

𝜆
       𝑤ℎ𝑒𝑛 𝜆 ≠ 0

 ln 𝑌𝑡      𝑤ℎ𝑒𝑛 𝜆 = 0
           (3.13) 

 

where 𝛌 is the shape parameter and a real number. The common types of Box-Cox 

transformation based on the value of 𝛌 are presented in Table (3.1). 
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Table (3.1) 

Box-Cox Transformation Based on the Value of 𝛌 

 

 

 

 

                       

 

 

          Source: Wei (2006) 

 

3.2.8 Autoregressive Moving Average [ARMA (p,q)] Model 

 An ARMA (p , q) model is a combination of AR (p) and MA (q) models and is 

suitable for univariate time series modeling. The ARMA (p , q) model has the 

following :    

     𝑌𝑡= 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑒𝑡 − 𝜃1𝑒𝑡−1 − 𝜃2𝑒𝑡−2 − ⋯ − 𝜃𝑞𝑒𝑡−𝑞    (3.14) 

         The time series data must be stationary in order to apply an ARMA (p , q) 

model. When q=0, the model changes into a pure autoregressive model of order p. 

Likewise, when p= 0, the model changes into a pure moving average model of order 

q. The forecast of the ARMA (p, q) model are dependent upon the current and past 

value of the response Y as well as the current and past value of the errors.  

 The Autocorrelation Function (ACF) and Partial Autocorrelation Function 

(PACF) properties for autoregressive-moving average processes are shown in  

Table (3.2). 
 

Table (3.2) 

Properties of AR, MA, and ARMA Processes 

Model Autocorrelation (ACF) Partial Autocorrelation (PACF) 

AR (p) Tails off 
Cut off after order p of the 

process 

MA (q) 
Cut off after order q of the 

process 
Tails off 

ARMA(p, q) Tails off Tails off 

Source: Wei (2006) 

Lambda Value (λ) Transformed Value (y) 

-1.0 1   𝑌𝑡⁄  

-0.5 1 √  𝑌𝑡⁄  

0.0    𝑙𝑜𝑔10 (  𝑌𝑡) or   ln (  𝑌𝑡) 

0.5   √  𝑌𝑡 

1.0      𝑌𝑡 
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 The orders p and q in an ARMA model are determined from the patterns of the 

sample ACF and PACF. 

 

3.2.9 Autoregressive Integrated Moving Average [ARIMA (p, d, q)] Model 

 If an observed process time series is non-stationary in the mean, then we can 

difference the series.  

  𝜙𝑝(𝐵)𝑌𝑡 =  𝜃𝑞(𝐵)𝑒𝑡                                  (3.15)  

Then we have a model capable of describing certain types of non-stationary series. 

This model is also called the integrated moving average model. If 𝑌𝑡 is replaced by 

(1 − 𝐵)𝑑𝑌𝑡 in the equation (3.15). The general ARIMA (p, d, q) model is   

 𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 =  𝜃0 + 𝜃𝑞(𝐵)𝑒𝑡                      (3.16)  

where   𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝   

  𝜃𝑞(𝐵) = 1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞 

p = the number of the AR parameters in the model,  

q = the number of MA parameters and 

d = the degree of differencing. 

The parameter 𝜃0 plays very different roles for d = 0 and d  0. When d = 0, 

the original process is stationary, and 0  is related to the mean of the process. 

However, d ≥ 1 then 𝜃0 is called the deterministic trend term. The resulting 

homogeneous non-stationary model in Equation (3.16) has been referred to as the 

autoregressive integrated moving average model of order (p, d, q) and is denoted as 

the ARIMA (p, d, q) model. 

 The correlation and partial correlation between 𝑌𝑡 and 𝑌𝑡+𝑘 is calculated as 

follows: 
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3.3 Model Building Strategy for ARIMA Model 

 The basic of Box-Jenkins approach to modeling time series consist of four 

stages. They are identification, estimation, diagnostic checking, and forecasting. 
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Step (1): Identification 

 The first is to determine whether the series is stationary. The unit root test is 

used to determine whether time series data is stationary or not. An experienced 

analyst, the plot of the series along with the sample ACF and sample PACF may be 

used to determine whether time series data is stationary or not. A time series data is 

non-stationary if the sample ACF decays very slowly and the sample PACF cut offs 

after lag 1. The model is found to be nonstationary, stationary could be achieved by 

differencing. The differencing method is to transform a non-stationary series to 

stationary series. The level of differencing to achieve stationary is denoted by d, and 

the non-stationary model is denoted by ARMA (p, d, q). Try taking the first difference 

(1-B)𝑌𝑡. More generally, to remove non-stationary that one may need to consider a 

higher order differencing (1 − 𝐵)𝑑𝑌𝑡 for d ≥ 1. In most cases, d is 0, 1, or 2. 

 Once a stationary data series is attained, the next step involves computing and 

examine the sample ACF and sample PACF. After compute and examine the sample 

ACF and sample PACF of the properly transformed and differenced series to identify 

the orders of p and q, where p is the highest order in the autoregressive polynomial 

(1 − 𝜙𝐵 − ⋯ − 𝜙𝐵𝑝), and q is the highest order in the moving average polynominal 

(1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞). Usually the needed orders of p and q are less than or equal to 

3.  

 This step is essential in order to compare the computed autocorrelations and 

partial autocorrelations with the theoretical ones for various ARIMA models. Both of 

the sample autocorrelations and sample partial autocorrelations are compared with 

± 2
√𝑛

⁄  , where  n is the number of observations in the time series.  

 

Step (2): Estimation  

           The next step is parameter estimation in the model. This step involves 

estimating the parameters of model by minimizing the sum of squared of the fitting 

errors. To obtain the estimate of the parameter the following methods can be used: 

(i) Method of Moment  

(ii)  Maximum Likelihood Estimation (MLE) Method 

(iii) Ordinary Least Squares (OLS) Method   

 The most commonly method used to estimate the parameters in the model is 

the maximum likelihood method. 
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Maximum Likelihood Method 

 Maximum likelihood method has two situations. These situations are 

approximately and exactly. The approximate situation classified two categories, such 

as conditional likelihood estimation and unconditional likelihood estimation. 

 

Conditional Maximum Likelihood Estimation 

For general stationary ARMA (p, q) model,  

 qtqttptptt eeeYYY −−−− −−−+++=   1111                                  (3.17) 

where  𝑌𝑡 = 𝑌𝑡 −  and {𝑒𝑡 are idenpendent identically distributed (i. i. d), N (0, 2

a ) 

white noise, the joint probability density of a = (𝑎1, 𝑎2, ⋯ , 𝑎𝑛)′ is given by 

    P(a⎹ ϕ, μ, θ, 𝝈𝒂
𝟐) = (2𝝅𝝈𝒂

𝟐)−𝒏 𝟐⁄ exp[
𝟏

𝟐𝝅𝝈𝒂
𝟐 ∑ 𝒂𝒕

𝟐𝒏
𝒕=𝟏 ]                     (3.18) 

From Equation (3.17), 

 ptpttqtqtt YYYeee −−−− −−−+++=   1111                             (3.19) 

 Let Y =(𝒀𝟏, 𝒀𝟐, … , 𝒀𝒏)  and assume that initial conditions 

 𝒀∗= (𝒀𝟏−𝒑, 𝒀−𝟏, 𝒀𝟎)  and 𝒆∗=(𝒆𝟏−𝒒 ,,  𝒆−𝟏, 𝒆𝟎)   

The conditional log -likelihood function is 

ln𝑳∗(ϕ, μ, θ, 𝝈𝒂
𝟐) = −

𝒏

𝟐
 ln 2𝝅𝝈𝒂

𝟐 −
𝑺∗(𝝓,𝝁,𝜽)

𝟐𝝈𝒂
𝟐                                                (3.20) 

where 𝑺∗(𝝓, 𝝁, 𝜽) =  ∑ 𝒂𝒕
 𝟐𝒏

𝒕=𝟏 (ϕ,,⎹𝒀∗,𝒂∗,Y) is the conditional sum of squares 

function. The quantities of ,ˆ,ˆ    and ̂   which maximize equation are called the 

conditional maximum likelihood estimators. 

 Based on the assumptions that 𝑌𝑡 is stationary and 𝑒𝑡 is a series of i.i.d, (0, 

𝑎 
2 ). The unknown  𝑦𝑡 by the sample mean  �̅� and unknown 𝑎𝑡 by its expected value 

of 0, and also assume 𝑒𝑝=𝑒𝑝−1==𝑒𝑝+1−𝑞= 0 and calculate 𝑒𝑡 for t > (p+1), then  

𝑺∗ (∅, , ) = ∑ 𝒂𝒕
𝟐𝒏

𝒕=𝒑+𝟏 (ϕ, μ, θ, 𝝈𝒂
𝟐 )                               (3.21) 

The estimate 2ˆ
a , of 𝑎 

2  can be calculated as 

𝝈𝒂
𝟐 = 

𝐒∗(∅̂,   �̂�,   �̂�)

𝐝.𝐟.
                      (3.22) 

 

Unconditional Maximum Likelihood Estimation and Backcasting Method 

 The ARMA model can be written in either the forward form, 

     (1−𝜙1𝐵 − ⋯ −  𝜙𝑝𝐵𝑝) 𝑌𝑡 = (1 −  1𝐵 − ⋯ − 𝑞𝐵𝑞)𝑒𝑡                        (3.23) 
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or the backward form, 

      (1−𝜙1𝐹 − ⋯ −  𝜙𝑝𝐹𝑝) 𝑌𝑡 = (1 −  1𝐹 − ⋯ − 𝑞𝐹𝑞)𝑒𝑡                       (3.24)  

where  𝐹𝑗𝑌𝑡 = 𝑌𝑡−𝑗.  

The 𝑒𝑡  is also a white noise with mean zero and constant variance 2

e . The 

unconditional log likelihood function is 

 ln𝑳∗(ϕ, μ, θ, 𝝈𝒂
𝟐) = −

𝒏

𝟐
 ln 2𝝅𝝈𝒂

𝟐 −
𝑺∗(𝝓,𝝁,𝜽)

𝟐𝝈𝒂
𝟐             (3.25) 

where, S(𝝓, 𝝁, 𝜽) is the unconditional sum of square function given by 

S(∅, 𝝁, 𝜽) =  ∑  [𝑬(𝒂𝒕
𝒏
𝒕=−∞ ⎹ 𝝓, 𝝁, 𝜽, 𝒀)]𝟐 

The quantitie �̂�, �̂� and �̂� that maximize equation are called unconditional maximum 

likelihood estimators. These estimator are equivalent to the unconditional least 

squares estimators obtained by minimizing S (ϕ, ,) .  

S(𝝓, 𝝁, 𝜽) =  ∑  [𝑬(𝒂𝒕
𝒏
𝒕=−𝑴 ⎹ 𝝓, 𝝁, 𝜽, 𝒀)]𝟐 

where M is a sufficiently large integer such that the back cast increment. 

  The estimate �̂�𝑎 
2  of 𝑎 

2  can be calculate as  

  𝝈𝒂
𝟐 = 

𝐒(∅̂,   �̂�,   �̂�)

𝐧
 

Once the parameters and their standard error are known, the t values were used to 

check if the model generated is statistically significant or not. 

 

Step (3): Diagnostics checking  

A model should be checked for its adequacy before it is used for forecasting. 

An adequate model is obtained when the residuals cannot be used to improve 

forecasts. The residual should be random. Histogram and normal probability plots are 

useful to check for normality. Time sequence plots are useful to check for outliers. 

The following diagnostics are made: 

(i) Time plot of the residuals 

(ii) Plot of the residuals’ ACF 

(iii)  Normal Quantile- Quantile (QQ) plot 

 

 The criteria used to check the model are listed as follows: 

(1) The individual autocorrelations should be small and generally within ± 2 √𝑛⁄  of 

zero. 
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(2) The residual autocorrelations as a group should be consistent with those 

produced by random errors. Checks on adequacy can be done using chi-square 

test based on the Ljung-Box Q test statistic.  

   Null Hypothesis;  𝐻0 ∶ 𝜌1 =  𝜌2 =  ⋯ =  𝜌𝑘 = 0 

      There is no autocorrelation among random errors. 

         Alternative Hypothesis;   𝐻1: At least one of the 𝜌𝑘
′ 𝑠 are not equal to zero. 

   There is autocorrelation among random errors. 

 The residual autocorrelations as a group is examined using this test. The Q 

statistic is given by 

 Q = n(n+2)∑
𝛾𝑘

2(𝑒)

𝑛−𝑘

𝑚
𝑘=1            (3.26) 

where  n  = number of residuals, 

  k  = time lag, 

m = number of time lags include in the test and  

𝛾𝑘(e) = sample autocorrelation function the residuals time lagged k period. 

 The Q statistic is approximately distributed as a chi-square random variable 

with m-r degree of freedom, where r is the total number of parameters estimated in the 

ARIMA model. If the p value associated with Q is small, the model is considered to 

be inadequate. Hence, a new model or a modified model needs to be developed until a 

satisfactory model is achieved.  

 

Step (4): Forecasting 

 Forecasts are usually made using a satisfactory model or a model that has been 

determined to be the best model. Forecasting can be considered when compare to 

actual time series. The confidence interval of a forecast is needed to observe the 

variations that have occurred. In general, the longer the forecast lead time, the longer 

the prediction interval. It is important to the forecast errors in the model provides 

reliable forecasts. If the magnitudes of the most forecast recent errors tend to 

consistently larger than previous errors, the model needs to be re-evaluated. The 

model needs to be correlated if the recent forecast errors tend to be consistently 

positive or negative. 

In most cases, a model having the best criteria results in unstable forecasts. 

For this reason, modeling is first carried out using a model with only a few 

parameters. The need for additional parameters will be evidence from an examination 
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of the residual autocorrelations and partial autocorrelations. An MA parameter shall 

be added if the MA behavior is apparent in the residual autocorrelations and partial 

autocorrelations. The AR parameter will be increase if the residual autocorrelations 

tend to shown an AR process. 

Consider the general nonstationary ARIMA (p, d, q) model with d ≠ 0. That is, 

   ( )( ) ( ) tt

d
eBYBB  =−1               (3.27)                                               

where  𝜙(𝐵) = (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) is a stationary AR operator and 

𝜃(𝐵) = (1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞)  is an invertible MA operator, respectively. 

For the general ARIMA model, the model at time t+l in an AR representation 

that exists because the model is invertible. Therefore,   

𝜋(𝐵)𝑌𝑡+𝑙 = 𝑒𝑡+𝑙                                                                      (3.28) 




=

+−++ +=
1j

ltjltjlt eYY               (3.29)   

By applying the operator  

  1

111 −

−+++ l

l BB    

Choosing ψ weights, 

,0
0

=
=

−

m

i

iim   for m = 1, 2,…, l-1.               

For a normal process, the (1-) 100% forecast limit are  

  ( ) a

L

J

Jn NlY 

2

1

1

0

21ˆ
2 








+ 

−

=

   

where, 𝑁𝛼
2⁄ is the standard normal deviate such that P (N  𝑁𝛼

2⁄ ) = 𝛼 2⁄  . 

 

3.4 Intervention Analysis 

 Intervention analysis can focus on the impact of an event as its purpose or on 

the elimination of the impact of that event on the time series. The combination of an 

ARIMA model and dichotomous independent variable is called an intervention 

model. An intervention is an event that occurs. Sociological and legal applications of 

intervention models have been used to measure the impacts of new traffic laws, 

decriminalization, gun control laws, air pollution laws and many other interventions. 

Intervention functions are a subset of methods called transfer functions.  
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3.4.1    ARMA (p, q) Model for Intervention Analysis 

 In the intervention analysis, there are two types of functions. One type is step 

function and other type is pulse function. The step function represents an intervention 

occurring at time T that remains in effect thereafter. Pulse function is interventions 

that are temporary and will die out after time T. A step function at time T is given by: 

 

              St
(T)

=  {
0 ; t < T 
1; t ≥ T

                  (3.30) 

and a pulse function at T is given by: 

 

  Pt
(T)

=  {
0 ; t ≠ T
1; t = T

          (3.31) 

The pulse function can be produced by differencing the step function𝑆𝑡
(𝑇)

.  
 

 Pt
(T)

 = St
(T)

−  St−1
(T)

 = (1-B) St
(T)

 

An intervention model can be represented equally with the step function or with the 

pulse function. 

 In general, an intervention model consists of two components: an intervention 

function and an ARIMA noise model. 

 Intervention model = f (𝐼𝑡) + 𝑁𝑡 

where the intervention function is designated f (𝐼𝑡) and; 

 Nt = ARIMA (p, d, q)(P, D, Q) 

 

 It = { 
1 ; intervention occurs

 0 ;  otherwise                    
 

 The several different response patterns of an intervention function are showed 

in Figure (3.1). 
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Figure (3.1)  Responses to Step and Pulse Function 

Source: Box et al. (2016)  

 

 Several different response patterns are possible through different choices of 

the transfer function. Figure 3.1 shows the responses for various simple transfer 

functions with both step and pulse indicators as input. In Figure 3.1(a) can be used to 

represent a permanent step change in level of unknown magnitude 𝜔 after time T. A 

gradual change with rate 𝛿 that eventually approaches the long-run change in level 

equal to 
𝜔

1−𝛿
 , is shown in Figure 3.1(b).  

 A sudden ‘‘pulse’’ change after time 𝑇 of unknown magnitude 𝜔1, followed 

by a gradual decay of rate 𝛿 back to the original preintervention level with no 

permanent effect is shown in Figure 3.1(d). More complex response patterns can be 

obtained by various linear combinations of the simpler forms is shown in Figure 

3.1(f).       
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3.4.2 ARIMAX- Transfer Function Model  

 The ARIMAX model is simply an ARIMA model with additional or input 

variables. It also includes other independent variables. ARIMAX model is referred to 

as Transfer Function Model (Wei, 2006). The ARIMAX model is similar to a 

multivariate regression model. The model is an integration of a regression model with 

an ARIMA model. The result of this model covers the advantages of both models. 

The regression method describes the explanatory relationship while the ARIMA 

method takes care of the autocorrelation in the residuals of the regression model. This 

model is suitable for forecasting when data is stationary or not, and multivariate with 

any type of data pattern.   

 Transfer Function Model (TFM) is assumed that the effect of the intervention 

model is increased from a deterministic dummy variable. The effect of the safety 

measures (intervention) factors which influence the level of intervention may be 

different from time to time. For instance, the effect of the safety seat-belt law on the 

number and rate of road traffic accidents is influenced by the percentage of seat-belt 

usage. The intervention variable can be any exogenous stochastic process. With this 

assumption, the transfer function-noise model is suitable to estimate the impact of the 

safety measures. The pattern is referred to as the transfer function-noise model (Box 

& Jenkins, 1976), otherwise known as the dynamic regression model (Pankratz, 

1991).  

 Assume that 𝑋𝑡 and 𝑌𝑡 are properly transformed series, they are both 

stationary. In a single input-output linear system are as follows: 

  𝑌𝑡   = 𝑣(B)𝑋𝑡 + 𝑁𝑡               (3.32) 

where 𝑣(B) = ∑ 𝑣𝑗𝐵𝑗∞
𝑗=−∞ . If 𝑣𝑗  = 0 for j<0, then 

  𝑌𝑡   = 𝑣0𝑋𝑡 + 𝑣1𝑋𝑡−1 + 𝑣2𝑋𝑡−2 + ⋯ 

        = (𝑣𝑜 + 𝑣1𝐵 + 𝑣2𝐵2 + ⋯ )𝑋𝑡  

         = 𝑣(B)𝑋𝑡                                                       (3.33) 

where 𝑣(B) = ∑ 𝑣𝑗𝐵𝑗∞
𝑗=−∞ , ∑ |𝑣𝑗|∞

𝑗=0 <∞ and 𝑋𝑡 and 𝑁𝑡 are independent. 

 The purposes of transfer function modeling are to identify and estimate the 

transfer function 𝑣(B) and a noise model for 𝑁𝑡 based on the available information of 

the input series  𝑋𝑡 and the output series 𝑌𝑡.The difficulties are that the information on 

𝑋𝑡 and 𝑌𝑡 is finite and the transfer function 𝑣(B) in Equation (3.32) may contain an 

infinite number of coefficients.  
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The transfer function 𝑣(B) in the rational form 

            𝑣(B) = 
𝜔(𝐵)𝐵𝑖

𝛿(𝐵)
                             (3.34) 

where 𝜔(B) = 𝜔0 − 𝜔1𝐵 − ⋯ − 𝜔𝑆𝐵𝑆, 𝛿(𝐵) = 1- 𝛿1𝐵 − ⋯ − 𝛿𝑟𝐵𝑟, and b is a delay 

parameter representing the actual time lag. In general, the transfer function can be 

written as  

             𝑣(B) = 
𝜔0−𝜔1𝐵−⋯−𝜔𝑠𝐵𝑆

1−𝛿1𝐵−⋯−𝛿𝑟𝐵𝑟
          (3.35) 

The general representation of the transfer function-noise model is given by 

         𝑌𝑡  = 𝜃0 +  ∑
𝜔(𝐵)𝐵𝑖

𝛿(𝐵)
𝐼𝑖,𝑡 +  

(1−𝜃𝑞𝐵)

(1−∅𝑝𝐵)(1−𝐵)𝑑
𝑒𝑡          (3.36) 

where  𝜃0  = Constant mean, 

            𝐼𝑖,𝑡  = ith input time series or a difference of the ith input time series, 

           b  = Pure time delay for the effect of the ith input time series, 

 𝜔(B) = Numerator polynomial of the transfer function for the ith input time 

series, 

           𝛿(𝐵)  = Denominator polynomial of the transfer function for the ith input time 

series, 

            𝑒𝑡  = White noise term and 

           B  = Backshift operator. 

  The estimation process and diagnostic checking are similar to ARIMA 

modeling the identification procedure is somewhat different. The intervention model 

consists of three parameters ω, 𝛿 and b, where ω is known as impact parameter which 

implies change due to intervention. 𝛿 is known as slope parameter which has different 

meaning in case of different types of intervention. In case of intervention step, if 𝛿 is 

near to zero, the effect of the intervention remains constant over time and if 𝛿 is near 

to one, the effect of intervention increases over time.  

 The delay parameter b usually takes value 0, 1 or 2; b=0 implies that the effect 

of intervention has occurred at the time of intervention, b=1 implies that the effect of 

intervention is felt after a delay of one period and so on. The order of b can be 

determined by examining the data visually and the form of the model is ascertained by 

comparing computed impulse response functions with theoretical impulse response 

functions. The impulse response functions is obtained by plotting the residual which 

is the absolute difference between the actual values of the post-intervention 
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observations with the forecasted value obtained by ARIMA model which fitted on the 

basis of pre-intervention data. The six step model specification processes are listed as 

follows (Box et al., 2016 and Montgomery et al., 2015). 

Step 1.  Obtaining the preliminary estimates of the coefficients in 𝑣(B) 

Step 2. Specifications of orders b, r and s. Figure (3.2) is shown the sample cross-

  correlation function (CCF) is used to the basic transfer function model  

  structures. To determine the orders of b, r and s based on the CCF. 

Step 3.  Obtain the estimates of 𝛿𝑖 𝑎𝑛𝑑 𝜔𝑖. 

Step 4.  Model the noise. 

Step 5.  Fit the overall model. 

Step 6.  Check the model adequacy. 
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        Figure (3.2)  Examples of Impulse and Step Response Function  

        Source: Box et al. (2016)  
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3.4.3 Model Bulding Strategy for ARIMAX-TFM  

  Building an ARIMAX-TFM is a similar iterative process as building a 

univariate Box-Jenkins ARIMA model. 

 

Step (1): Identification 

  Identification stage of transfer function involves prewhitening of both the 

input and output. Calculation the cross-correlation functions of the prewhitened series 

and identification of order b, s and r. The prewhitening process was achieved by 

fitting ARIMA model for each input series sufficient to reduce the residuals to white 

noise, then, filtered the input series with the model to get white noise series. The same 

ARIMA model was used to filter the output series to get white noise residual series. 

The prewhitening process for non-stationary series is given by 

  𝜙𝑥(𝐵)𝑋𝑡 =  𝜃𝑥(𝐵)𝛼𝑡                 (3.37) 

where  𝛼𝑡 is white noise with mean zero and variance 𝜎𝛼
2, 

  𝛼𝑡 =  𝜃𝑥(𝐵)−1𝜙𝑥(𝐵)𝑋𝑡 and 

  βt = 𝜃𝑥(𝐵)−1𝜙𝑥(𝐵)𝑌𝑡. 

  The cross-correlation functions between the prewhitened input series and 

output series were calculated at various lags, L (L= 0, ±1, ±2, ⋯ , ±7).  

 

Step (2): Estimation 

  After identification of model is completed, the next step is to estimate the 

parameters of transfer function model. The model parameters are estimated using 

maximum likelihood estimation method. 

  𝑌𝑡 = 
𝜔(𝐵)

𝛿(𝐵)
𝑋𝑡−𝑏 + 

𝜃(𝐵)

∅(𝐵)
𝑒𝑡           

  𝛿(𝐵)𝜙(𝐵)𝑌𝑡 = 𝜙(𝐵)𝜔(𝐵)𝑋𝑡−𝑏 + 𝛿(𝐵)𝜃(𝐵)𝑒𝑡 

where 𝛿(𝐵)𝜙(𝐵) = (1-𝛿1(𝐵) − ⋯ − 𝛿𝑟𝐵𝑟)(1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝) 

  𝜙(𝐵)𝜔(𝐵) = (1-𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝)(𝜔0 − 𝜔1𝐵 − ⋯ − 𝜔𝑠𝐵𝑠 

  𝛿(𝐵)𝜃(𝐵) = (1 − 𝛿1𝐵 − ⋯ − 𝛿𝑟𝐵𝑟)(1 − 𝜃1𝐵 − ⋯ − 𝜃𝑞𝐵𝑞) 

The  𝑎𝑡  are N (0, 𝜎𝑎
2) white noise series. The conditional likelihood function is  

L (𝜹, 𝝎, 𝝓, 𝜽, 𝝈𝒂
𝟐⎹ 𝒃, 𝒙, 𝒚, 𝒙𝟎, 𝒚𝟎, 𝒂𝟎) =  (2𝜋𝜎𝑎

2)−𝑛
2⁄  exp [-

1

2𝜎𝑎
2 ∑ 𝑎𝑡

2𝑛
𝑡=1 ]           (3.38) 
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Step (3): Diagnostic Checking 

  In this step, after the model has been identified and its parameters estimated, it 

is necessary to check the model adequacy before forecasting. In the transfer function 

model, the autocorrelation check of residual is performed to see whether the residual 

was random and cross-correlation analysis between input series that has been 

prewhiening with residual transfer function model. The adequacy of the model was 

checked using the Ljung-Box statistics. 

 

(i) Cross-correlation check 

To check the noise series 𝑎𝑡 and the input series 𝑥𝑡 are independent. For an 

adequate model, the sample CCF between �̂�𝑡 and 𝛼𝑡 should no pattern and lie within 

their two standard errors. The following test can also be used: 

𝑄0 = m(m+2)∑
𝛾�̂�

2(𝑗)

𝑚−𝑗

𝐾
𝑗=0                          (3.39) 

which approximately follows a 𝜒2 distribution with (K+1)-M degree of freedom, 

where m is the number of residuals �̂�𝑡 and M is the number of parameters 

𝛿𝑖 𝑎𝑛𝑑 𝜔𝑗estimated in the transfer function. 

 

(ii) Autocorrelation Check 

  To check the noise model is adequate. For an adequate model, both the 

sample ACF and PACF of �̂�𝑡 should not show any pattern. The Q-statistic is given by 

 𝑄1 = m(m+2)∑
𝛾�̂�

2(𝑗)

𝑚−𝑗

𝐾
𝑗=1               (3.40) 

The 𝑄1 statistic approximately follows a 𝜒2 distribution with (K-p-q) degree of 

freedom depending only on the number of parameters in the noise model. 

 

3.5 Model Selection Criteria 

In time series analysis, it is crucial to identify the appropriate ARIMA model 

by analyzing the plot of the series and matching its sample autocorrelation and partial 

autocorrelation patterns. However, additional analysis is necessary to select a 

satisfactory model. This can be achieved by employing various model selection 

criteria. In this study, the following criteria are utilized to select the best model: the 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Square Error 
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(MSE), and Root Mean Square Error (RMSE). These criteria are computed as 

follows:  

 

(i) Akaike Information Criterion (AIC) 

The formula for the AIC is 

 AIC = n ln (�̂�𝑎
2) + 2k                                        (3.41) 

where �̂�𝑎
2 = 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠

𝑛
, 

 n = sample size and 

 k = the number of model parameters. 

 

(ii) Bayesian Information Criterion (BIC) 

The formula for the BIC is  

 BIC = n ln (�̂�𝑎
2) + k ln (n)                          (3.42) 

where  �̂�𝑎
2 = 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠

𝑛
,  

 n = sample size and 

 k = the number of model parameters. 

 In time series analysis, AIC and BIC can be used to compare different models 

and select the one that provides the best balance between goodness of fit and 

simplicity. The lower the value of AIC or BIC, the better the model is considered. 

Both criteria are based on various assumptions and asymptotic approximations. 

(iii)     The Mean Absolute Error (MAE) 

 MAE measures the average magnitude of the errors in a set of predictions, 

without considering their direction. It’s the average over the test sample of the 

absolute differences between prediction and actual observation where all individual 

differences have equal weight. The mean absolute error is defined as: 

           MAE = 
1

𝑛
∑ ⎹ 𝑌𝑡

𝑛
𝑡=1 − �̂�𝑡⎹           (3.43) 

where  �̂�𝑡 = the prediction, 

𝑌𝑡 = the true value and 

  n = number of observation. 
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(iv)      The Mean Absolute Percentage Error (MAPE) 

 MAPE is the mean or average of the absolute percentage errors of forecasts. 

Error is defined as actual or observed value minus forecasted value. The mean 

absolute percentage error is given by 

         MAPE = 
1

𝑛
∑

⎹𝑌𝑡−�̂�𝑡⎹

𝑌𝑡

𝑛
𝑡=1 × 100           (3.44) 

where  �̂�𝑡 = the prediction, 

𝑌𝑡 = the true value and 

 n = number of observation. 

 

(v)   The Mean Square Error (MSE) 

MSE of an estimator measures the average of error square. It is always non-

negative and values closed to zero are better. The mean square error is expressed as: 

           MSE = 
1

𝑛
∑ (𝑌𝑡 − �̂�𝑡)2𝑛

𝑡=1                          (3.45)  

where  �̂�𝑡 = the prediction, 

𝑌𝑡 = the true value and 

             n = number of observation. 

 

(vi)      The Root Mean Square Error (RMSE) 

 RMSE is a quadratic scoring rule that also measures the average magnitude of 

the error. It’s the square root of the average of square differences between prediction 

and actual observation. The root mean square error is expressed as: 

            RMSE = √𝑀𝑆𝐸            (3.46) 

where  MSE = Mean Square Error 
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CHAPTER IV 

ANAYSIS OF RISK FACTORS RELATING TO TRAFFIC 

CASUALTIES IN YANGON 

 

 This chapter consists of the various statistical analyses and key findings on 

traffic casualties in Yangon. The status of road traffic accidents and casualties were 

firstly analyzed by using descriptive statistics. The logistic regression was further 

used to analyze the risk factors which are significantly related to road traffic 

casualties. 

 

4.1 Data Source 

 This study collected the secondary data on traffic accidents and its 

consequences of casualties from No.(2) Office of Traffic Police in Yangon for the 

period from 2013 to 2022 on the monthly basis. Based on the severity of traffic 

accident, the consequences of casualty were classified into fatalities and injuries. All 

these data were then converted from monthly basis to yearly basis. 

 

4.2 Descriptive Statistics of Road Traffic Accidents and Casualties  

 The most common characteristics of road traffic accidents and casualties in 

Yangon are discussed through the analysis using descriptive statistics in this section. 

 

4.2.1 Status of Traffic Accidents and Casualties  

 The distribution of road traffic accidents, fatalities and injuries for the period 

from 2013 until 2022 is presented in Table (4.1).  
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Table (4.1) 

Yearly Traffic Accidents and Casualties in Yangon 

Year 
Number of 

Accidents 

Number of 

Fatalities 

Number of 

Injuries 

2013 2122 342 2955 

2014 2208 382 2926 

2015 1956 365 2609 

2016 1866 391 2176 

2017 1731 403 2061 

2018 1718 386 1776 

2019 1432 382 1530 

2020 1126 338 1218 

2021 586 255 525 

2022 669 310 654 

    Source: No. (2)  Office of Traffic Police (Yangon) 

 

 According to Table (4.1), it was observed that the lowest number of accidents 

was 586 in 2021, while the highest number of accidents occurred in 2014 with a total 

of 2,208. In terms of fatalities, the minimum number was 255 in 2021, whereas the 

maximum was 403 in 2017. The lowest number of traffic injuries was 526 in 2021 

however the highest number of injuries was 2,955 in 2013. It has been found that the 

number of injuries exceeded the number of fatalities. It can be found that each 

accident might involve multiple individuals getting fatal or injured. In particular, such 

decreases occurred in 2021 might be attributed to the significant impact of the Covid- 

19 pandemic in Myanmar. There were fewer vehicles and people on the roads and 

streets, and it is less likely to have traffic accidents at that time. It is also expected that 

there may be somewhat difference in the number of accidents and casualties between 

actual and reported cases. Particularly, minor traffic accidents and casualties might 

not be included in the official record of Traffic Police due to failure to report such 

minor cases in reality. The trend of road traffic accidents, fatalities, and injuries are 

presented in Figure (4.1).  
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Figure (4.1)  Trend of Traffic Accidents and Casualties  

Source: No. (2) Office of Traffic Police (Yangon) 

 

  According to Figure (4.1), the number of accidents, fatalities and injuries as a 

downward trend during the study period from 2013 to 2021, but started to increase in 

2022. 

 

4.2.2  Traffic Casualties Status by Gender 

 The number of males and females who suffered from road traffic accidents 

causing fatalities and injuries is shown in Table (4.2) and Figure (4.2). It can be 

observed that there was a significant difference in the number of fatalities and injuries 

between males and females.  
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Table (4.2) 

Number of Traffic Casualties by Gender  

Year 

Number of 

Fatalities 

Number of 

Injuries 

Male Female Male Female 

2013 269 73 1953 1002 

2014 329 53 2003 923 

2015 289 76 1737 872 

2016 325 66 1527 649 

2017 317 86 1414 647 

2018 324 62 1248 528 

2019 296 86 1021 509 

2020 274 64 848 370 

2021 198 57 366 159 

2022 243 67 450 204 

         Source: No. (2)  Office of Traffic Police (Yangon) 

 

 

Figure (4.2)  Number of Traffic Casualties by Gender  

  Source: No. (2)  Office of Traffic Police (Yangon) 

 

 According to Table (4.2), it was observed that the number of fatalities and 

injuries caused by traffic accidents was higher for males than for females. In this 

study, males were likely to be less disciplined than females and more likely to drive 

under the influence of alcohol and drugs, resulting in higher number of injuries and 
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fatalities in Myanmar. Additionally, a large number of males usually engage in risky 

working environment of driving and as a result they might be suffered from traffic 

accidents more than females. The number of accidents and casualties by gender was 

also found to be the lowest in 2021 as mentioned above. 

                      

4.2.3  Traffic Accidents and Casualties Status by Place  

 The place of occurrence of accident and casualties were classified into 

junction, roundabout, main road, lane and on bridge. Table (4.3) and Figure (4.3) 

provide descriptions of the place of accidents and casualties commonly recognized in 

Yangon. 
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Table (4.3) 

Number of Traffic Accidents and Casualties by Place 

Year 

Number of Accidents Number of Fatalities Number of Injuries 

Junction 
Round 

about 

Main 

Road 
Lane 

On 

Bridge 
Junction 

Round 

about 

Main 

Road 
Lane 

On 

Bridge 
Junction 

Round 

about 

Main 

Road 
Lane 

On 

Bridge 

2013 347 11 1148 583 33 38 0 188 112 4 511 11 1636 773 24 

2014 394 15 1387 327 85 55 2 249 60 16 563 15 1765 444 139 

2015 347 7 1195 349 58 48 0 250 55 12 485 2 1533 473 116 

2016 342 3 1414 48 59 40 1 330 10 10 450 0 1611 44 71 

2017 366 13 1121 158 73 66 2 266 51 18 449 15 1355 155 87 

2018 361 3 1135 154 65 60 0 284 33 9 385 0 1153 143 95 

2019 234 3 1111 37 47 46 1 317 10 8 245 0 1189 41 55 

2020 255 2 728 108 33 60 1 235 34 8 284 0 781 111 42 

2021 106 2 433 22 23 42 0 197 8 8 92 0 407 14 12 

2022 103 2 532 10 22 43 1 251 4 11 89 3 532 8 22 

Source: No. (2)  Office of Traffic Police (Yangon)

6
6
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     Figure (4.3)  Number of Traffic Accidents and Casualties by Place  

      Source: No. (2)  Office of Traffic Police (Yangon) 
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 As shown in Figure (4.3), the majority of traffic accidents, fatalities, and 

injuries were occurred on main roads, followed by lanes being the second most 

frequent location for the occurrence of accidents and casualties. Roundabouts 

represented the lowest number of accidents and casualties. This situation might be 

influenced by several factors such as well-maintained road conditions, high-speed 

driving, and non-compliance with traffic regulations by road users. Interestingly, it 

was observed that the number of traffic accidents and casualties was at its lowest in 

2021, likely influenced by the significant impact of the Covid-19 pandemic as 

mentioned earlier.  

 

4.2.4  Traffic Accidents and Casualties Status by Type of Vehicles  

 The vehicles involved in the accidents and casualties were grouped into six 

categories such as private cars, buses, taxis, trucks, motorcycles, and others. The types 

of vehicles involved in the occurrence of accidents and casualties are presented in 

Table (4.4) and Figure (4.4). 

 

 



 

 

69 

 

 

 

Table (4.4) 

Number of Traffic Accidents and Casualties by Type of Vehicles 

Year 
Number of Accidents Number of Fatalities Number of Injuries 

Car Bus Taxi Truck Motorbike Other Car Bus Taxi Truck Motorbike Other Car Bus Taxi Truck Motorbike Other 

2013 946 310 425 89 279 73 173 62 50 19 36 2 1158 762 529 110 384 12 

2014 768 275 660 126 300 79 99 60 102 37 80 4 906 613 830 175 398 4 

2015 808 212 550 43 261 82 159 42 78 12 59 15 999 453 755 48 329 25 

2016 893 77 599 30 200 67 209 4 120 4 50 4 923 40 940 14 245 14 

2017 771 179 441 55 212 73 185 46 88 13 63 8 884 304 564 33 247 29 

2018 774 146 359 67 288 84 177 40 55 10 89 15 826 148 357 76 335 34 

2019 489 144 313 35 255 196 113 38 56 10 104 61 571 183 335 20 265 156 

2020 474 92 215 21 239 85 131 27 58 6 100 16 538 141 206 22 257 54 

2021 140 58 110 9 103 166 55 12 28 2 71 87 147 75 96 5 86 116 

2022 334 82 81 70 74 28 161 40 33 30 38 8 297 89 74 89 70 35 

 Source: No. (2)  Office of Traffic Police (Yangon) 

6
9
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  Figure (4.4) Number of Traffic Accidents and Casualties by Type of Vehicles 

  Source: No. (2)  Office of Traffic Police (Yangon) 
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 Table (4.4) highlighted that most traffic accidents, fatalities and injuries were 

caused by private cars, followed by buses, taxis, motorcycles, trucks, and other 

vehicles. When examining the number of accidents and casualties by vehicle type 

from 2013 to 2022, it was found that the lowest figures were recorded in 2021. As 

shown in Figure (4.4), the involvement of private cars in the occurrence of road traffic 

accidents and casualties was significantly higher than other vehicle types. 

 

4.2.5 Accidents and Casualties Status by Time  

The time of the occurrence of road traffic accidents and casualties is divided 

into four periods: 6:00 AM-12:00 PM, 12:00 PM-18:00 PM, 18:00 PM-24:00 AM and 

24:00 AM-6:00 AM. The number of road traffic accidents and casualties occurred in 

day time and night time for the period from 2013 to 2022 are described in Table (4.5) 

and Figure (4.5).  
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Table (4.5) 

Number of Traffic Accidents and Casualties by Time 

Time 

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 
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6:00 

AM-

12:00 

PM 

752 65 614 743 79 592 682 51 573 549 48 449 491 71 370 409 51 305 363 57 268 282 67 189 92 39 86 134 59 150 

12:00 

PM-

18:00 

PM 

839 66 680 755 54 590 739 63 586 660 57 499 629 78 471 506 62 378 522 65 396 467 53 271 162 68 126 159 58 179 

18:00 

PM-

24:00 

AM 

1415 128 1137 1464 152 1147 1288 152 1000 1126 167 800 1061 157 760 1060 172 733 851 172 565 1095 169 618 286 121 289 313 145 262 

24:00 

AM-

6:00 

AM 

689 83 524 784 97 597 647 99 450 642 119 427 651 97 460 552 101 360 470 88 301 348 49 140 46 27 25 63 48 63 

 Source: No. (2)  Office of Traffic Police (Yangon) 
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 Figure (4.5)  Number of Traffic Accidents and Casualties by Time  

   Source: No. (2)  Office of Traffic Police (Yangon) 
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Based on descriptive analysis, it can be found that the highest number of 

accidents and casualties occurs during the night time (18:00 PM-24:00 AM), while 

the lowest number occurs during the morning time (6:00 AM-12:00 PM). Generally, 

more accidents and casualties were happened at night, and this can be influenced by 

factors such as being exhausted by drivers, increased alcohol consumption, and 

reduced visibility. Another influencing factor might be the driving speed on this 

particular traffic road. The data reveal that the least number of accidents and 

casualties occurred in 2021 for both day and night time, respectively. When 

examining the trends of traffic accidents and casualties over a study period, it was 

found that there were decreasing trends in the number of accidents and casualties 

since 2014, as depicted in Figure (4.5). 

 

4.2.6 Accidents and Casualties Status by Immediate Causes 

 The data on various immediate causes for the occurrence of traffic accidents 

and casualties were collected from the No. (2) Traffic Police Office and presented in 

Table (4.6) and Figure (4.6).  

 

Table (4.6) 

Number of Traffic Accidents and Casualties by Immediate Causes 

 

 

Year 

Number of Accidents Number of Fatalities Number of Injuries 

Human 

Error 

Failure to 

comply 

with the 

Regulation 

Mechanical 

Fault & 

Weather 

Human 

Error 

Failure to 

comply 

with the 

Regulation 

Mechanical 

Fault & 

Weather 

Human 

Error 

Failure to 

comply 

with the 

Regulation 

Mechanical 

Fault & 

Weather 

2013 1646 462 14 232 110 0 2518 432 5 

2014 1746 449 13 287 93 2 2425 451 50 

2015 1660 296 0 282 83 0 2330 279 0 

2016 1640 226 0 317 74 0 2010 166 0 

2017 1582 148 1 333 70 0 1964 97 0 

2018 1489 229 0 314 72 0 1593 183 0 

2019 1278 154 0 327 55 0 1419 111 0 

2020 975 151 0 289 49 0 1079 139 0 

2021 478 107 1 202 53 0 462 63 0 

2022 516 153 0 230 80 0 553 101 0 

Source: No. (2)  Office of Traffic Police (Yangon) 
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      Figure (4.6) Number of Traffic Accidents and Casualties by Immediate Causes 

Source: No. (2)  Office of Traffic Police (Yangon 

0

500

1000

1500

2000

2500

3000

3500

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

A
cc

id
en

t

F
at

al
it

y

In
ju

ry

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

N
o

. 
o

f 
A

c
c
id

e
n

ts
 a

n
d

 C
a

su
a

lt
ie

s

Year

Human Error

Failure to comply with the Regulations

Mechanical Fault&Wether Condition

7
5
 



 

 

76 

 According to Table (4.6), it was found that the highest number of accidents 

and casualties were occurred due to human error. Many traffic accidents and 

casualties were attributed to the failure of road users to follow traffic regulations, 

which was the second leading cause of such accidents and casualties. Mechanical 

faults and weather conditions were found to have minimal contribution to the 

occurrence of traffic accidents and casualties. In 2013, it was observed that only three 

traffic accidents in Yangon were caused by bad weather conditions, resulting in two 

injuries. As described in Figure (4.6), the number of traffic accidents and casualties in 

terms of their respective reasons show a gradual decline after the year 2014 except the 

number with the reason of human error. 

 

4.2.7 Accidents and Casualties Status by Alcohol Consumption 

 The number of traffic accidents and casualties being occurred by alcohol 

consumption is presented in Table (4.7). 

 

Table (4.7) 

Number of Accidents and Casualties by Alcohol Consumption 

Year 

Number of 

Accidents 

Number of 

Fatalities 

Number of 

Injuries 

Drink No-drink Drink No-drink Drink No-drink 

2013 43 (2.03%) 2079 (97.97%) 4 (1.17%) 338 (98.83%) 67 (2.27%) 2888 (97.73%) 

2014 51 (2.31%) 2157 (97.69%) 4 (1.05%) 378 (98.95%) 50 (1.71%) 2876 (98.29%) 

2015 23 (1.18%) 1933 (98.82%) 2 (0.55%) 363 (99.45%) 25 (0.96%) 2584 (99.04%) 

2016 16 (0.86%) 1850 (99.14%) 2 (0.51%) 389 (99.49%) 12 (0.55%) 2164 (99.45%) 

2017 21 (1.21%) 1710 (98.79%) 8 (1.99%) 395 (98.01%) 16 (0.78%) 2045 (99.22%) 

2018 18 (1.05%) 1700 (98.95) 2 (0.52%) 384 (99.48%) 11 (0.62%) 1765 (99.38%) 

2019 4 (0.28%) 1428 (99.72%) 0 (0.00%) 382 (100%) 6 (0.39%) 1524 (99.61%) 

2020 8 (0.71%) 1118 (99.29%) 5 (1.48%) 333 (98.52%) 11 (0.90%) 1207 (99.10%) 

2021 26 (4.44%) 560 (95.56%) 7 (2.75%) 248 (97.25) 48 (9.14%) 477 (90.86%) 

2022 26 (3.89%) 643 (96.11%) 13 (4.19%) 297 (95.81%) 29 (4.43%) 625 (95.57%) 

Source: No. (2)  Office of Traffic Police (Yangon) 

  

 In terms of alcohol consumption, the highest number of occurrences of traffic 

accident due to alcohol consumption was found as 4.44% in 2021, followed by 3.89% 

in 2022, 2.31% in 2014, and 2.03% in 2013, respectively. Regarding fatalities related 

to alcohol consumption, the highest percentage was observed as 4.19% in 2022, 
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followed by 2.75% in 2021, 1.99% in 2017 and  1.48% in 2020,. Regarding injuries 

related to alcohol consumption, the highest percentage was observed as 9.14% in 

2021, followed by 4.43% in 2022, 2.27% in 2013 and 1.71% in 2014, respectively. 

Based on the descriptive analysis, it was found that most of the road users did not 

consume alcohol when facing traffic accidents. The figure depicting accidents and 

casualties related to alcohol consumption are shown in Figure (4.7). 
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Figure (4.7) Number of Traffic Accidents and Casualties by Alcohol  Consumption 

Source: No. (2)  Office of Traffic Police (Yangon)
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 The variables utilized to study the risk factors of traffic fatalities and injuries 

are described in Section (4.3), and the relationship between traffic fatalities and risk 

factors is illustrated in Section (4.4). 

 

4.3 Description of Variables  

After carrying out the descriptive analysis of road traffic accidents and 

casualties, this study intended to examine the significance of risk factors of the road 

traffic casualties in Yangon are through analysis works of Binary Logistic Regression. 

 Accordingly, the occurrence of traffic fatalities and injuries were considered 

as dependent variables, whereas the risk factors such as gender (male, female), place 

of accident (junction, roundabout, main road, lane, on bridge), type of vehicles 

(private car, buses, trucks, taxi, motorcycle, other vehicles), time of accident (day, 

night), immediate causes of accident (human error, failure to comply with regulations, 

mechanical faults & weather conditions) and alcohol consumption (yes, no) were 

considered as independent variables.  

However, alcohol consumption was not statistically significant in the chi-

square test, so it was excluded in Binary Logistic Regression analysis. The variable 

coding for traffic fatalities, and are shown in Table (4.8) and for risk factors are 

presented in Table (4.9). 

 

Table (4.8) 

Variable Coding for Traffic Fatalities, and Injuries 

 

Dependent Variables 

Sr. 

No. 
Variable Type Coding  and  Classifications 

1 Traffic Fatalities 1 = Occurrence of traffic fatality 

0 = Non-occurrence of traffic fatality 

2 Traffic Injuries 1 =  Occurrence of traffic injury  (any person who was not 

killed but sustained one or more serious or slight 

injuries)         

0 =  Non-occurrence of traffic injury 
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Table (4.9) 

Variable Coding for Risk Factors 

 

Independent Variables 

Sr. 

No. 
Variable Type Coding  and  Classifications 

1. Gender 0 =  Female (Reference) 

1 = Male 

2. Place of  

Accident 

1 =  Main Road (Reference) 

2 =   Lane 

3 =   Roundabout  

4 =  Junction  

5 =  On Bridge  

3. Type of 

Vehicles 

1 =  Private Car  (Reference) 

2 = Bus 

3 = Taxi 

4 = Truck 

5 = Motorcycle 

6 =  Others 

4. Time of 

Accident 

1=  6:00 AM-12:00 PM (Reference) 

2= 12:00 PM-18:00 PM 

3= 18:00 PM-24:00 AM 

4 =  24:00 AM-6:00 AM 

5. Immediate 

Causes of 

Accident 

1 =  Mechanical Fault & Weather Conditions (Reference)   

2 = Failure to comply with the Regulation 

3 = Human Error 

 

4.4 Relationship between Traffic Fatalities and Risk Factors 

 The chi-square test was carried out to examine the association between traffic 

fatalities and various risk factors. The chi-square values, degrees of freedom, and  

p-values were displayed in Table (4.10). 
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Table (4.10) 

Chi-Square Analysis of Traffic Fatalities and Risk Factors 

Sr. 

No. 
Variable 

Chi-Square 

Value 

Degree of 

Freedom 
P-value 

1 Gender 218.869*** 1 .000 

2 Place of Accident 77.638*** 4 .000 

3 Type of Vehicles 284.354*** 5 .000 

4 Time of Accident 94.243*** 3 .000 

5 
Immediate Causes of 

Accident 
265.565*** 2 .000 

 Source: Own Calculation 

 ***denotes significant at 1% level 

 

 Table (4.10) illustrates that five risk factors, namely gender, place of accident, 

vehicle types, time of accident, and reasons for accident, are highly significantly 

associated with traffic fatalities. 

 The crosstabulation of gender and traffic fatality indicates that males had a 

higher percentage than females (refer to Appendix Table A-1). Regarding the 

crosstabulation of traffic fatality and place of accidents, it was found that main roads 

had the highest percentage of traffic fatalities compared to other places (refer to 

Appendix Table A-2). Based on the crosstabulation of traffic fatality and type of 

vehicles, private cars had a higher percentage than other vehicles (refer to Appendix 

Table A-3). The crosstabulation of time of accident and traffic fatalities (refer to 

Appendix Table A-4) shows that night time had a higher fatality rate. In terms of the 

crosstabulation of immediate causes of accident and traffic fatalities (refer to 

Appendix Table A-5), human error had a higher percentage compared to other reasons 

such as failure to comply with regulations, mechanical faults, and weather conditions. 

The analysis of traffic fatalities data using binary logistic regression is described in 

Section (4.5). 

 

4.5 Binary Logistic Regression Analysis for Traffic Fatalities 

 The binary logistic regression analysis was conducted to identify the 

influencing factors on traffic fatalities in Yangon. The overall model fitting 

information for binary logistic regression analysis is given in Table (4.11). 
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Table (4.11) 

Model Fitting Information for Traffic Fatalities with Risk Factors 

Model Fitting Criteria Chi-Square df p-value 

Omnibus Tests of Model Coefficients 819.359 15 .000 

Hosmer and Lemeshow 8.650 8 .373 

-2Log Likelihood                18632.845 

Cox and Snell R square .037 

Nagelkerke R square .062 

Overall Correct Prediction 83.8 

Source: Own Calculation 

 

 The omnibus tests of model coefficients indicate that the inclusion of five 

independent variables results in a chi-square value of 819.359, corresponding to 15 

degrees of freedom, and a p-value of 0.000. This outcome suggests that the overall 

model holds statistical significance in predicting the factors influencing traffic 

fatalities. To assess the model fit, the Hosmer and Lemeshow test is employed, 

evaluating the correspondence between actual and predicted values of the dependent 

variable. The computed Hosmer and Lemeshow test statistic produces a χ2 value of 

8.650, with an associated p-value of 0.373. This suggests that the test does not achieve 

statistical significance. Consequently, it can be inferred that the model demonstrates a 

favorable fit. 

 The statistic for the -2 log likelihood is 18632.845. The computed values for 

Cox and Snell's 𝑅2 and Nagelkerke's 𝑅2 are 0.037 and 0.062, respectively. These 

values suggest that around 3.7% and 6.2% of the variability in traffic fatalities can be 

explained by the linear combination of the risk factors. Overall, 83.8% of the number 

of fatalities is predicted correctly. The parameter estimates for the risk factors of 

traffic fatalities resulting from the binary logistic regression is described in Table 

(4.12). 
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Table (4.12) 

Parameter Estimates for Risk Factors of Traffic Fatalities 

Variable Coefficients S.E Wald df 
p-

value 

Exp 

(b) 

95% C.I for 

EXP(B) 

Lower Upper 

Constant -3.435*** .727 22.336 1 .000 .032   

Gender         

Female (Ref.)         

Male 0.587*** .046 159.506 1 .000 1.798 1.642 1.970 

Place of Accident         

Main Road (Ref.)         

Lane -0.446*** .054 69.474 1 .000 .640 0.576 0.711 

Junction -0.263*** .061 18.500 1 .000 .769 0.682 0.866 

On Bridge -0.270** .109 6.084 1 .014 .764 0.616 0.946 

Roundabout -0.365 .389 .880 1 .348 .694 0.324 1.489 

Type of Vehicles         

Private Car (Ref.)         

Bus -0.210*** .065 10.440 1 .001 .810 0.713 0.921 

Taxi -0.257*** .051 25.160 1 .000 .773 0.700 0.855 

Motorcycle 0.387*** .053 53.424 1 .000 1.473 1.328 1.634 

Truck 0.248** .099 6.260 1 .012 1.282 1.055 1.557 

Others 0.802*** .088 82.178 1 .000 2.229 1.875 2.651 

Time of Accident         

6:00 AM- 12:00 PM 

(Ref.) 
        

12:00 PM-18:00 PM -0.154** .063 6.000 1 .014 .857 0.757 0.970 

18:00 PM-24:00 AM 0.051 .055 .879 1 .348 1.052 0.946 1.171 

24:00 AM-6:00 AM 0.234*** .062 14.441 1 .000 1.264 1.120 1.426 

Immediate Causes of  

Accident 
        

Mechanical Fault & 

Weather Condition 

(Ref.) 

        

Failure to comply 

with the Regulation 
2.049*** .726 7.976 1 .005 7.760 1.872 32.167 

Human Error 1.285* .724 3.146 1 .076 3.615 0.874 14.954 

 ***denotes significant at 1% level, **denotes significant at 5% level, *denotes significant    

       at 10% level  

  

 According to the results of Binary Logistic Regression analysis, it was found 

that males are approximately 1.798 times more likely to experience fatalities 

compared to females. Therefore, males have a higher likelihood of death than females 

when involved in accidents. In terms of the place of accidents, the junction and lane 
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variables are statistically significant at the 1% level, while the on-bridge variable is 

significant at the 5% level, all with negative signs. The risk of fatalities for lane is 

approximately 0.36 times lower compared to the main road. The junction has a risk of 

fatalities approximately 0.231 times lower than the main road, while on bridges, the 

risk is approximately 0.236 times lower compared to the main road. On the other 

hand, roundabout is not statistically significant at any significant level compared to 

the main road. This suggests that the coefficients for roundabout regarding the risk of 

fatalities are not statistically different from zero when other variables are held 

constant. Therefore, roundabouts are less likely to result in death compared to the 

main road. 

 Type of vehicles was found to be statistically significant at the 1% and 5% 

levels, respectively. The coefficients for buses, taxis, motorcycles, and other vehicles 

(such as three-wheelers, slow vehicles, etc.) were significant at the 1% level, and the 

negative parameter estimates are observed for buses and taxis. It can be concluded that 

buses are approximately 0.19 times less likely to be involved in fatalities compared to 

private cars, while taxis are approximately 0.227 times less likely to be at risk of 

fatalities compared to private cars. On the other hand, motorcycles were approximately 

1.473 times more likely to be involved in fatalities compared to private cars, and other 

vehicles were approximately 2.229 times more likely to be at risk of fatalities 

compared to private cars. These two vehicle types exhibited positive signs, indicating 

that they have a higher likelihood of resulting in death than private cars. The 

coefficient for trucks was significant at the 5% level, with a positive sign. This 

suggests that trucks are more likely to result in death compared to private cars. 

 The period of "Afternoon time" (12:00 PM – 18:00 PM) was found to hold 

statistical significance at the 5% level. The effect of time on traffic fatalities is 

negative, indicating that the likelihood of traffic fatalities during the afternoon is 

roughly 0.143 times less compared to the morning period (6:00 AM – 12:00 PM). The 

"Morning time" (24:00 AM - 6:00 AM) was found to be statistically significant at the 

1% level. Morning time has a positive impact on traffic fatalities, suggesting that the 

likelihood of traffic fatalities during the night is approximately 1.264 times more 

compared to the morning period (6:00 AM – 12:00 PM). Consequently, it can be 

inferred that night time is more associated with a higher likelihood of fatalities 

compared to the daytime. On the other hand, the "Night time" (18:00 PM - 24:00 AM) 

does not demonstrate statistical significance at any significant level in comparison to 
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the morning period. This implies that the coefficients for night time (18:00 PM - 24:00 

AM) in relation to the risk of fatalities are not statistically distinguishable from zero 

when accounting for other variables. Hence, night time (18:00 PM - 24:00 AM) is 

relatively more likely to lead to fatalities compared to the morning period (6:00 AM - 

12:00 PM). 

 The immediate causes of accident were found to be significant at the 1% and 

10% levels, and they positively influenced traffic fatalities. Failure to comply with 

regulations is approximately 7.760 times more likely to result in fatalities compared to 

mechanical faults and weather conditions. Similarly, human error is approximately 

3.615 times more likely to result in fatalities compared to mechanical faults and 

weather conditions. Hence, failure to comply with regulations and human error has a 

higher chance of resulting in death compared to mechanical faults and weather 

conditions. The relationship between traffic injuries and risk factors is discussed in 

section (4.6). 

  

4.6 Relationship between Traffic Injuries and Risk Factors 

 The chi-square test was conducted to examine the association between traffic 

injuries and various risk factors including gender, place of accident, type of vehicle, 

time of accident and immediate causes of accident for the occurrence of injuries. In 

the data analysis of traffic injuries, the chi-square values, degrees of freedom, and p-

values for the five risk factor variables were displayed in Table (4.13). 

 

Table (4.13) 

Chi-Square Analysis of Traffic Injuries and Risk Factors 

Sr. 

No. 
Variable 

Chi-Square 

Value 

Degree of 

Freedom 
P-value 

1 Gender 979.861*** 1 .000 

2 Place of Accident  250.598*** 4 .000 

3 Type of Vehicles 1239.789*** 5 .000 

4 Time of Accident 74.297*** 3 .000 

5 Immediate Causes of  

Accident 
256.800*** 2 .000 

Source: Own Calculation 

***denotes significant at 1% level  
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 From Table (4.13), it is evident that all risk factors, including gender, place of 

accident, type of vehicles, time of accident, and immediate causes of accident are highly 

and significantly associated with traffic injuries.  

 According to the crosstabulation of gender and traffic injury, males have a 

higher percentage than females (see Appendix Table: B-1). In the crosstabulation of 

traffic injury and place of accident, it was found that the main road had the highest 

percentage of traffic injuries compared to other places (see Appendix Table: B-2). 

Based on the crosstabulation of traffic injury and type of vehicles, the percentage of 

private cars was higher than that of other vehicles (see Appendix Table: B-3). The 

results from the crosstabulation of time and traffic injuries (see Appendix Table: B-4) 

indicate that a higher number of injuries occurred during the night. According to the 

crosstabulation of immediate causes of accident and traffic injuries (see Appendix 

Table: B-5), it was found that the percentage of injuries caused by human error was 

higher than those caused by failure to comply with regulations, mechanical faults, and 

weather conditions. Binary logistic regression analysis for traffic injuries is discussed 

in Section (4.7). 

 

4.7 Binary Logistic Regression Analysis for Traffic Injuries 

 The binary logistic regression analysis was conducted to identify the 

influencing factors on traffic injuries in Yangon. The overall model fitting 

information for the binary logistic regression analysis is provided in Table (4.14). 

 

Table (4.14) 

Model Fitting Information for Traffic Injuries with Risk Factors 

Model Fitting Criteria Chi-Square Df p-value 

Omnibus Tests of Model Coefficients 3245.844 15 .000 

Hosmer and Lemeshow 15.449 8 .051 

-2Log Likelihood 11229.236 

Cox and Snell R square .145 

Nagelkerke R square .288 

Overall Correct Prediction 89.1 

Source: Own Calculation 
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 The omnibus tests of model coefficients show that the incorporation of six 

independent variables yielded a chi-square value of 3245.844, corresponding to 15 

degrees of freedom, and a p-value of 0.000. To assess the model's fitness, the Hosmer 

and Lemeshow test examines the agreement between actual and predicted values of 

the dependent variable. The Hosmer and Lemeshow test statistic is χ2 = 15.449, with a 

p-value of 0.051, indicating a lack of statistical significance. This suggests that the 

model exhibits a satisfactory fit. The -2 log likelihood statistic is 11229.236. The Cox 

and Snell's R2 and Nagelkerke R2 values are 0.145 and 0.288, respectively. These 

values indicate that approximately 14.5% and 28.8% of the variation in traffic injuries 

is explained by the model. Overall, 89.1% of the traffic injuries are predicted 

correctly. The parameter estimates for the binary logistic regression model of traffic 

injuries, considering the variables of gender, place of accident, type of vehicles, time 

of accidents, and immediate causes for accident are presented in Table (4.15). 
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Table (4.15) 

Parameter Estimates for Risk Factors of Traffic Injuries 

Variable Coefficients S.E Wald Df 
p-

value 
Exp (b) 

95% C.I for 

EXP(B) 

Lower Upper 

Constant 5.383*** 0.436 152.442 1 0.000 217.701   

Gender         
Female (Ref.)         
Male -4.278*** 0.260 270.230 1 0.000 0.014 0.008 0.023 

Place of Accident         

Main Road (Ref.)         

Lane -0.563*** 0.055 104.633 1 0.000 0.569 0.511 0.634 

Junction 0.935*** 0.117 63.750 1 0.000 2.546 2.024 3.203 

On Bridge -0.105 0.118 0.790 1 0.374 0.900 0.714 1.135 

Roundabout -1.387*** 0.355 15.227 1 0.000 0.250 0.125 0.501 

Type of Vehicles         
Private Car (Ref.)         
Bus -0.161** 0.078 4.293 1 0.038 0.852 0.732 0.991 
Taxi -0.141** 0.058 5.873 1 0.015 0.869 0.776 0.973 
Motorcycle 3.364*** 0.292 132.417 1 0.000 28.908 16.299 51.271 
Truck -0.513*** 0.109 22.183 1 0.000 0.599 0.484 0.741 

Others -1.827*** 0.087 445.926 1 0.000 0.161 0.136 0.191 

Time of Accident         
6:00 AM-12:00 PM  

(Ref.) 
        

12:00 PM-18:00 PM -0.477*** 0.081 34.879 1 0.000 0.620 0.530 0.727 
18:00 PM-24:00 AM -0.332*** 0.075 19.597 1 0.000 0.718 0.620 0.831 
24:00 AM-6:00 AM -0.449*** 0.082 29.868 1 0.000 0.638 0.543 0.750 
Immediate Causes of 

Accident 
        

Mechanical Fault & 

Weather Condition 

(Ref.) 
        

Failure to comply 

with the Regulation 
4.200*** 0.447 88.231 1 0.000 66.684 27.760 160.185 

Human Error 0.978*** 0.349 7.869 1 0.005 2.659 1.343 5.267 
***denotes significant at 1% level, **denotes significant at 5% level 

  

 Based on the results of Binary Logistic Regression, it was found that male is 

statistically significant at the 1% level, with a negative parameter estimate. This 

suggests that males are approximately 0.986 times less likely to experience injuries 

compared to females. 

 In terms of the occurrence of accident place, lane and roundabout are 

statistically significant at the 1% level, with negative signs. The odd ratio of lane and 

roundabout are 0.569 and 0.250 and this indicates that lanes are about 0.431 times less 
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risky for injuries compared to the main road, while roundabouts are about 0.750 times 

less risky for injuries compared to the main road. Among these places of accident, the 

junction is statistically significant at 1% level when compared to main road, with a 

positive sign. This suggest that the junction is 2.546 more likely to get injurie 

compared the main road.  Thus, lanes and roundabouts are considered safer options 

than the main road in terms of injury risk. On the other hand, the variable for accidents 

on bridges is not statistically significant at any significant level. This indicates that the 

regression coefficient for accidents on bridges is not statistically different from zero 

when the other variables are held constant.  

 The coefficients for the motorcycle, truck and other vehicles (such as three-

wheelers, slow vehicles, etc.) are significant at the 1% level. The sign of the coefficient 

is positive for the motorcycle and negative for truck and other vehicles. This suggests 

that motorcycles are approximately 28.908 times more at risk of injuries compared to 

private cars, while truck and other vehicles are about 0.401 and 0.839 times less at risk 

of injuries compared to private cars. On the other hand, the coefficient for buses and 

taxi are significant at the 5% level. It has a negative sign, indicating that buses and taxi 

are approximately 0.148 and 0.131 times less at risk of injuries compared to private 

cars.  

 Afternoon time (12:00 PM – 18:00 PM), night time (18:00 PM - 24:00 AM), 

and morning time (24:00 AM - 6:00 AM) were all found to hold statistical significance 

at the 1% level, respectively. Each of these variables exhibits a negative impact on 

traffic injuries, suggesting that afternoon time, evening time, and early morning time 

are roughly 0.380, 0.282 and 0.362 times less likely to result in traffic injuries 

compared to the morning period (6:00 AM – 12:00 PM). On the other hand, the 

variable "failure to comply with regulations" and "human error" are significant at the 

1% level. Both of these variables have positive coefficients, indicating that they have a 

positive effect on traffic injuries. Failure to comply with regulations is approximately 

66.684 times more at risk of injuries compared to mechanical faults and weather 

conditions. Similarly, human error is about 2.659 times more at risk of injuries 

compared to mechanical faults and weather conditions. These results suggest that 

failure to comply with regulations and human error contribute to a higher likelihood of 

injuries compared to mechanical faults and weather conditions.  
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CHAPTER V 

TIME SERIES ANAYSIS OF TRAFFIC ACCIDENTS AND 

CASUALTIES IN YANGON 

 

 This chapter consists of various statistical analyses and key findings on traffic 

accidents and casualties in Yangon. The study collected monthly records of road 

traffic accidents and casualties (fatalities and injuries) from the No. (2) Office of 

Traffic Police in Yangon. The impact of road safety measures was investigated using 

ARIMA model, Intervention model, and ARIMAX-TFM in this chapter. Moreover, 

this approach enables us to forecast future traffic accident and casualties, providing a 

proactive foundation for traffic management and accident prevention strategies. 

 

5.1 Time Series Analysis of Road Traffic Accidents  

 Table (5.1) presents the compiled monthly traffic accident statistics covering 

the period from 2013 to 2022. The data for this table has been obtained from the 

Traffic Police Office No. (2) in Yangon. It provides a comprehensive overview of the 

accident occurrences over the years, allowing for a detailed analysis of the trends and 

patterns in traffic accidents in the region.  
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Table (5.1) 

Monthly Traffic Accidents  

Month/Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Jan 121 194 201 157 189 121 152 109 94 56 

Feb 126 180 157 169 155 112 129 126 43 56 

Mar 155 171 170 198 149 168 121 105 12 63 

Apr 164 215 166 150 198 168 107 69 37 64 

May 160 188 149 176 147 158 141 96 46 57 

Jun 195 190 168 151 140 183 111 123 53 60 

Jul 168 180 135 159 130 137 123 107 43 64 

Aug 201 176 148 115 127 125 112 90 56 63 

Sep 201 175 147 154 118 124 98 66 42 55 

Oct 213 188 183 148 114 144 116 57 51 40 

Nov 211 159 172 146 120 142 112 98 58 42 

Dec 207 192 160 143 144 136 110 80 51 49 

Source: No. (2)  Office of Traffic Police (Yangon) 

  

 Based on the findings presented in Table (5.1), the number of accidents 

reached its peak in 2014 and gradually declined in subsequent years. However, in 

2021, the number of traffic accidents was relatively lower compared to other years 

due to the significant impact of the Covid-19 pandemic. It is worth noting that there 

was a slight increase in traffic accidents in 2022. Furthermore, the highest number of 

traffic fatalities occurred in May 2014, totaling 215 cases, whereas the lowest number 

was recorded in March 2021, with only 12 cases. Figure (5.1) provides a visual 

representation of the monthly traffic accident trend in Yangon. The figure illustrates 

that the data do not exhibit any noticeable seasonal variation. The results of testing the 

seasonality of traffic accidents in Yangon are shown in Appendix Table C-1. 
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     Figure (5.1)   Monthly Traffic Accidents  

     Source: Table (5.1) 

0

50

100

150

200

250

300

350

400

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

N
o

. 
o

f 
A

cc
id

en
ts

Year

2013 2014 2015 2016 2017

2018 2019 2020 2021 2022

9
2
 



 

 

93 

5.1.1 Statistical Test of Trend for Traffic Accidents  

 The series exhibits trend or not is tested as follows: 

 Hypotheses 

       Null Hypothesis: There is no trend for traffic accidents in Yangon. 

Alternative Hypothesis: There is a positive or negative trend for traffic 

accidents in Yangon. 

 

Table (5.2) 

Statistical Test of Trend for Traffic Accidents 

t-Test Statistic Critical Value Observations 

-4.480 1.984 120 

   Source: Own Calculation 

 

  According to the values in Table (5.2), the test statistic is calculated as |-4.480| 

= 4.480, while the critical value is determined to be 1.984. Consequently the test 

statistic exceeds the critical value. Hence, it can be concluded that there is a negative 

trend in traffic accidents in Yangon from 2013-2022. 

  

5.1.2 Test of Stationarity for Traffic Accidents  

 In this section, the Augmented Dickey-Fuller test was employed to assess the 

stationarity of traffic accidents in Yangon. The stationarity test results were conducted 

on the traffic accident series in Yangon, using monthly time series data covering the 

period from January 2013 to December 2022. The summarized results of this test are 

presented in Table (5.3). 

 

Table (5.3) 

Augmented Dickey-Fuller Test for Traffic Accidents 

Before first difference After first  difference 

t-Statistic Prob t-Statistic Prob 

Augmented Dickey-

Fuller test statistic 
-1.3774 0.5916 

Augmented Dickey-

Fuller test statistic 
-11.3906 0.0000 

Test 

critical 

values: 

1% level -3.4812  Test 

critical 

values: 

1% level -3.4816  

5% level -2.8838  5% level -2.8839  

10% level -2.5787  10% 

level 
-2.5788  

Source: Appendix (C-2) 
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Hypotheses 

𝐻0: The recorded number of traffic fatalities has a unit root (i.e., The recorded number 

of traffic fatalities is non-stationary). 

𝐻1: The recorded number of traffic fatalities does not have a unit root (i.e., The 

recorded number of traffic fatalities is stationary).  

Based on the findings in Table (5.3), the original data series is observed to be 

non-stationary at a 5% level of significance. However, after applying the first 

difference, the Augmented Dickey-Fuller (ADF) test rejects the null hypothesis of a 

unit root at a 5% significance level. Consequently, these processes appear to exhibit 

stationarity in terms of their mean level. Sections 5.2 to 5.4 present the analysis of the 

traffic accidents data using various models, including the ARIMA model, Intervention 

model, and ARIMAX-TFM model. 

 

5.2 ARIMA Model for Traffic Accidents  

 In time series analysis, the most crucial steps are to identify and build a model 

based on the available data. ARIMA approach consists of model identification, 

parameter estimation and diagnostic checking. 

 

5.2.1 Model Identification  

 A total of 15,414 traffic accident cases were reported in Yangon from January 

2013 to December 2022. The original series depicting the traffic accidents in Yangon 

is illustrated in Figure (5.2). 

           Figure (5.2)  Original Series of Traffic Accidents  
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 Regarding Figure (5.2), it is evident that the original series of traffic accidents 

in Yangon experienced a decline after the year 2015. This indicates a negative trend 

in the series, suggesting its non-stationary. To further analyze the series, the sample 

autocorrelation function (ACF) and sample partial autocorrelation function (PACF) 

for traffic injuries in Yangon are illustrated in Figure (5.3). 

 

 

Figure (5.3)  Sample Correlogram of the Original Series of Traffic Accidents  

              

Based on Figure (5.3), it can be observed that the sample autocorrelation 

function (ACF) exhibits a slow decay, while the sample partial autocorrelation 

function (PACF) cuts off after lag 1. These patterns in the ACF and PACF indicate 

the presence of nonstationarity in the series. Therefore, it is necessary to apply 

differencing to remove the non-stationarity. The first difference series for traffic 

accidents in Yangon is depicted in Figure (5.4). 
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            Figure (5.4)  First Difference Series for Traffic Accidents  

 

The sample ACF and sample PACF for the first differencing of traffic 

accidents series are presented in Figure (5.5). 

 
 

    

Figure (5.5)  ACF and PACF of First Difference Series for Traffic  

Accidents  
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 Based on Figure (5.5), it can be observed that the ACF cuts off after lag 1, and 

the PACF exhibits exponential decay. Therefore, the ARIMA (0, 1, 1) model is 

selected as the preferred tentative model for forecasting traffic accidents. 

 

5.2.2 Parameter Estimation  

The parameter estimation results show that the constant (𝜃0) is not significant, 

but the moving average parameter (𝜃1) is significant. Therefore, the estimated 

parameters and associated statistic for the ARIMA (0, 1, 1) model without constant 

(𝜃0)  can be found in Table (5.4). 

Table (5.4)  

Estimation of Parameters and their Statistics for ARIMA (0, 1, 1) Model of 

Traffic Accidents  

 Source: Own Calculation 

 ***denotes significant at 1% level  

 

From above Table (5.4), the estimated model is 

      (1-B) 𝑌𝑡 = (1 − 𝜃1𝐵)𝑒𝑡 

                           = (1 – 0.505B) 𝑒𝑡 

                              (0.080) 

   The fitted ARIMA (0, 1, 1) model of traffic accidents give  𝜃1 = 0.505 with the 

estimated standard error of 0.080. The test statistic t for 𝜃1 is statistically significant at 

1% level. 

 

5.2.3  Diagnostic Checking of ARIMA (0, 1, 1) Model for Traffic Accidents 

  The residual ACF and PACF for the fitted ARIMA (0, 1, 1) model are shown 

in Figure (5.6). 

Parameter Estimate S.E T Sig 

𝜃1 0.505*** .080 6.300 .000 
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 Figure (5.6) ACF PACF of Residuals for ARIMA (0, 1, 1) Model 

 

  Based on Figure (5.6), the residual values of the ACF and PACF for the traffic 

accidents dataset are within the bounds of two standard errors. This indicates that the 

residual series of the fitted ARIMA (0, 1, 1) model follows a white noise process. To 

further assess the autocorrelation among the residuals, the Ljung-Box (Q) test statistic 

was employed. Table (5.5) presents the test statistic and corresponding p-value for the 

residuals of the fitted ARIMA (0, 1, 1) model for traffic accidents. 

 

Table (5.5) 

Model Statistics of ARIMA (0, 1, 1) Model for Traffic Accidents  

Model 
Ljung-Box Q (18) 

Statistic df Sig 

ARIMA (0, 1, 1) 17.815 17 .401 

 Source: Own Calculation 

 

   Table (5.5) reveals that the observed value of Q is 17.815, and its associated 

p-value of 0.401 exceeds the significance level of 0.05. This result indicates the 

absence of significant autocorrelation among the residuals. Therefore, the ARIMA (0, 

1, 1) model is deemed suitable for accurately fitting the data series of traffic accidents 

in Yangon. 
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5.3   Intervention Analysis of Traffic Accidents  

   The analyzed interventions encompassed the implementation of the Motor 

Vehicle Law, Permission to Import Vehicles Law, Motor Vehicle Management Law, 

as well as political changes and the impact of the Covid-19 pandemic on all citizens. 

These government policies and the pandemic have a significant impact on the time 

series data of traffic accidents. 

 

5.3.1  Model Identification  

  Figure (5.7) displays the occurrences of traffic accidents related to the Motor 

Vehicles Law, Permission to Import Vehicle Law, Vehicle Safety and Motor Vehicle 

Management Law, as well as the influence of Political Changes and the Covid-19 

pandemic for intervention analysis. 

 

 
                    Figure (5.7) Intervention of Traffic Accidents  

  

The stationarity test is conducted on the pre-intervention series of traffic 

accidents, which suggests that a transformation is necessary to achieve stationarity 

(refer to Appendix Table C-5).To identify an appropriate model, the sample 

autocorrelation function (ACF) and the sample partial autocorrelation function 

(PACF) are employed as primary tools. Figure (5.8) displays the ACF and PACF 

values of first difference pre-intervention series for traffic accidents in Yangon. 
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Figure (5.8) ACF and PACF of Pre-intervention Series for Traffic Accidents  

 

The exponential decay observed in the ACF and the cuts off after lag 1 in the 

PACF, the ARIMA (1, 0, 0) model is found to provide a superior fit for the pre-

intervention series of traffic accidents data. 

 

5.3.2 Parameter Estimation 

The intervention for the Motor Vehicle Law, political changes, and the third 

wave of Covid-19 occurred in September 2015, February 2017, April 2020, and 

March 2021, respectively. The impact of the Motor Vehicle Law represents 

intervention 𝑆1, which is expected to produce a step change. Similarly, the effect of 

the Motor Vehicle Law is denoted as intervention 𝑃1. The Vehicle Safety and Motor 

Vehicle Management Law represent intervention 𝑃2, which is expected to produce a 

pulse change. The Political Changes and the Covid-19 pandemic represent 

intervention  𝑆2 which is expected to cause a step change. The response functions are 

as follows:  

 S1 =  {
0       if t < 33 (September 2015)
1      if t ≥ 33 (September 2015)

 

        P1 =  {
0       if t ≠ 49 (January 2017)
1      if t = 49 (January 2017)

   

    P2 =  {
0       if t ≠ 88 (April 2020)
1      if t = 88 (April 2020)

 

     S3 =  {
0       if t < 99 (March 2021)
1      if t ≥ 99 (March 2021)

 

 As a result, the ARIMA (1, 0, 0) model with intervention is chosen as the 

fitted model. The estimated parameter values can be found in Table (5.6). 
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Table (5.6)  

Estimation of Parameters and their Statistics for ARIMA (1, 0, 0) Model with 

Intervention 

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level 

 Based on the information provided in the above table, it is evident that the 

estimate of δ is not significant. Consequently, the parameter δ is excluded, and the 

resulting estimation outcomes are presented in Table (5.7). 

 

Table (5.7)  

Estimation of Parameters and their Statistics for ARIMA (1, 0, 0) Model with 

Intervention (without δ) 

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level 

 

Parameters Estimates S.E T Sig 

𝜃0 168.178*** 11.044 15.228 .000 

𝜙1 0.711*** 0.073 9.756 .000 

𝜔1 -36.139*** 12.405 -2.913 .004 

𝜔2 37.057*** 12.454 2.976 .004 

𝜔3 -28.915** 12.454 -2.322 .022 

𝜔4 -41.297** 19.509 -2.117 .037 

𝛿 0.336 0.502 .669 .505 

𝜔5 -68.371*** 14.068 -4.860 .000 

Parameters Estimates S.E T Sig 

𝜃0 167.805*** 11.164 15.030 .000 

𝜙1 0.716*** 0.072 9.971 .000 

𝜔1 -36.135*** 12.515 -2.887 .005 

𝜔2 37.083*** 12.414 2.987 .003 

𝜔3 -28.942** 12.414 -2.331 .022 

𝜔4 -33.170** 16.006 -2.072 .041 

𝜔5 -67.757*** 14.136 -4.793 .000 
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From the Table (5.7), the fitted model is 

         𝑌𝑡 = 𝜃0 + 𝜔1S1 + (𝜔2 + 𝜔3)P1 + 𝜔4 𝑃2 + 𝜔5S2  +
1

(1−𝜙1𝐵)
𝑒𝑡 

              =167.805 − 36.135S1 + (37.308 − 28.942)P1 − 33.170P2 − 67.757S2 +
1

(1−0.716𝐵)
𝑒𝑡 

   

  The fitted ARIMAX (1, 0, 0) model of traffic accidents give 𝜔1= -36.135, 𝜔2= 

37.308, 𝜔3= −28.942, 𝜔4 = −33.170, 𝜃0 = 167.805, and 𝜙1 =  0.716 with the estimated 

standard errors of 12.515, 12.414, 12.414, 16.006, 14.136, 11.164 and 0.072, 

respectively. The test statistic (t) for all parameters are statistically significant at the 

1% level, except for 𝜔3 𝑎𝑛𝑑 𝜔4, which are statistically significant at the 5% level. 

 According to the parameter estimates presented in Table (5.32), the coefficient 

of the Motor Vehicle Law is statistically significant at the 1% level. The negative 

effect suggests that the implementation of this law is associated with a decrease in 

traffic accidents. After the law is implemented, there is a tendency for a reduction in 

the number of traffic accidents. Additionally, the coefficient of the Permission to 

Import Vehicle Law is statistically significant at the 1% and 5% level. The positive 

effect implies that the implementation of this law is associated with an increase in 

traffic accidents. After the law is implemented, there tends to be a higher number of 

traffic accidents. The difference between the two coefficients (37.308 - 28.942) 

indicates the net effect of the Permission to Import Vehicle Law variable on traffic 

accidents. The magnitude of this difference is 37.308 - 28.942 = 8.366. Since the 

coefficient for P₁ is positive, this implies that, on average, there is an increase of 8.366 

traffic accidents for each unit increase in the Permission to Import Vehicle Law 

variable. 

  Furthermore, the coefficient of the Vehicle Safety and Motor Vehicles 

Management Law is statistically significant at the 5% level. The negative effect 

indicates that the implementation of this law is associated with a decrease in traffic 

accidents. After the law is implemented, there is a tendency for a reduction in the 

number of traffic accidents. However, the estimated coefficient of political changes 

and Covid-19 pandemic is statistically significant at 1% level. This suggests that the 

negative effects of political changes and the occurrence of the Covid-19 pandemic are 

indicative of the implementation of this changes being associated with a decrease in 

traffic accidents. 
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5.3.3  Diagnostic Checking  

   Figure (5.9) displays the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the residuals from the ARIMAX (1, 0, 0) model 

with intervention. 

 

 

Figure (5.9)  ACF and PACF of Residuals for the ARIMA   (1, 0, 0) Model 

with Intervention 

   

  As observed in Figure (5.9), the ACF and PACF values of the residuals, 

resulting from the intervention, lie within the boundaries defined by two standard 

errors. This suggests that the residual series of the fitted ARIMA (1, 0, 0) model 

exhibit characteristics of a white noise process. Table (5.8) presents the Ljung-Box 

test statistics and corresponding p-values for the residual series of the Transfer 

Function - Noise Model applied to traffic accidents. 
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Table (5.8) 

Model Statistics of ARIMA (1, 0, 0) Model with Intervention for  

Traffic Accidents  

Model 
Ljung-Box Q (18) 

Statistic Df Sig 

ARIMA (1, 0, 0) 

with Intervention 
26.794 17 .061 

 Source: Own Calculation 

 

 Based on the information provided in the table, the observed value of Q is 

26.794, and its corresponding p-value is 0.061, which is greater than the significance 

level of 0.05. Consequently, there is no significant evidence of autocorrelation among 

the residuals. This suggests that the intervention model is suitable for fitting the data 

series of traffic accidents in Yangon, and it can be utilized to forecast future values of 

traffic accidents in the area. 

 

5.4 ARIMAX-TFM for Traffic Accidents  

 The ARIMAX-TFM identified a relationship between traffic accidents and 

three independent variables: over speeding, reckless driving, and pedestrian 

negligence. In this model, the dependent variable is traffic accidents, while the 

independent variables are over speeding, reckless driving, and pedestrian negligence. 

 

5.4.1 Determine the ARIMA Model for Input Series 

 Time series plot of the traffic accidents (𝑌𝑡), over speeding (𝑋1,𝑡), reckless 

driving (𝑋2,𝑡) and pedestrian negligence (𝑋3,𝑡) were described in Figure (5.10). 
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Figure (5.10) Time Series Plots of Dependent Variable (𝒀𝒕) and Independent 

Variables (𝑿𝟏,𝒕,  𝑿𝟐,𝒕, 𝑿𝟑,𝒕 ) 

 

The Figure (5.10) offers an overview of the time series plots for both the 

output series and the input series. The stationarity or non-stationarity check 

specifically for the output series is described in Section (5.1.2). On the other hand, the 

details regarding the remaining input series (over speeding, reckless driving, and 

pedestrian negligence) can be found in Appendix Table (C-8). Figure (5.11) shows the 

corresponding sample autocorrelation function (ACF) and sample partial 

autocorrelation function (PACF) for these input series. 
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Over Speeding 

 
 

Reckless Driving 

   

Pedestrian Negligence 

 

Figure (5.11)  ACF and PACF Plots of the Input Series of Traffic Accidents  

 

Based on the analysis of Figure (5.10), it is evident that the time series data for 

both over speeding and pedestrian negligence exhibit stationarity, which is further 

supported by the findings presented in Appendix Table (C-8). The observation of a 

slow decay in the ACF and the cuts off after lag 2 in the PACF suggests the need for 

autoregressive terms in the ARIMA model. The consideration of four tentative 

ARIMA models, ARIMA (2, 0, 0), (0, 0, 2), (1, 0, 0), and (0, 0, 1), for both the over 

speeding and pedestrian negligence series is appropriate based on the characteristics 

of the ACF and PACF. The selection of the ARIMA (2, 0, 0) model for both series 

due to its lowest AIC and BIC values is a well-founded decision. A lower AIC and 
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BIC value indicates a better fit of the model to the data and suggests that the ARIMA 

(2, 0, 0) model provides a superior representation of the underlying patterns in the 

over speeding and pedestrian negligence data. 

In contrast, the reckless driving series is non-stationary (refer to Appendix 

Table C-7), and differencing is necessary to remove the non-stationarity. Figure (5.12) 

describes the first-differenced reckless driving series for traffic accidents in Yangon. 

 
 

Figure (5.12) First Difference Reckless Driving Series for Traffic Accidents  

 

Figure (5.13) displays the sample autocorrelation function (ACF) and sample 

partial autocorrelation function (PACF) for the first differencing of the reckless 

driving series. 

 

 
 

Figure (5.13)  ACF and PACF of First Difference Reckless Driving Series for      

Traffic Accidents  

 

Based on Figure (5.13), the ACF exhibits a spike at lag 1, and the PACF cuts 

off after lag 1 for the reckless driving series. Based on these observations, three 

tentative ARIMA models are considered: ARIMA (1, 1, 1), ARIMA (1, 1, 0), and 
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ARIMA (0, 1, 1), by analyzing the ACF and PACF plots. Among these three models, 

the ARIMA (1, 1, 1) model is not significant for one parameter. On the other hand, 

the other two models, ARIMA (1, 1, 0) and ARIMA (0, 1, 1), show significant 

parameters and have residual values that lie within the two standard error limits. This 

suggests that these models provide a good fit to the data and adequately capture the 

underlying patterns in the reckless driving series. Among the two models with 

significant parameters and well-behaved residuals, the ARIMA (0, 1, 1) model has the 

lowest values of AIC and BIC. The AIC and BIC are statistical measures used for 

model selection, with lower values indicating a better fit to the data. Therefore, the 

ARIMA (0, 1, 1) model is selected as the tentative model for the reckless driving 

series, as it provides a superior fit to the data compared to the ARIMA (1, 1, 0) model. 

 

5.4.2 Parameter Estimation of ARIMA Model for Input Series 

 Table (5.9) presents the estimated parameters and corresponding statistic for 

the ARIMA (2, 0, 0), ARIMA (0, 1, 1), and ARIMA (2, 0, 0) models. 

 

Table (5.9)  

Estimation of Parameters and their Statistics for ARIMA Models for  

Input Series 

 Model Parameters Estimates S.E t Sig 

Over Speeding 
ARIMA 

(2, 0, 0) 

𝜃0 

𝜙1 

𝜙2 

11.665*** 

0.434*** 

0.329*** 

1.328 

0.088 

0.088 

8.785 

4.947 

3.730 

.000 

.000 

.000 

Reckless 

Driving 

ARIMA 

(0, 1, 1) 
𝜃1 0.389*** 0.085 4.568 .000 

Pedestrian 

Negligence 

ARIMA 

(2, 0 , 0) 

𝜃0 

𝜙1 

𝜙2 

19.423*** 

0.617*** 

0.213** 

3.312 

0.090 

0.091 

5.864 

6.836 

2.349 

.000 

.000 

.020 

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level 

 

5.4.3  Diagnostic Checking for Input Series 

 The residuals of the reckless driving and pedestrian negligence series exhibit 

values within the two standard error limits, as shown in (Appendix Table: C-8). For 
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the over speeding series, the residuals mostly fall within the two standard error limits, 

except for lag 21. 

 

5.4.4 Cross Correction Function for Input Series 

 Cross correlation function between input series, output series and impulse 

response estimate. The cross correlation performed on each input and output series 

that has been prewhitening. Cross correlation function results are shown in Figure 

(5.14). 

 
 

 
 

    
Figure (5.14) CCF Plots between Output Series and Input Series of Traffic  

  Accidents  
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5.4.5  Identification of Transfer Function – Noise Model 

  The ARIMA model for noise series is displayed in Figure (5.15). 

 

 
 

Figure (5.15) Plot of Noise Series for Traffic Accidents  

 

Referring to Figure (5.15), it can be observed that the noise series pertaining to 

traffic accidents exhibits non-stationarity. As a result, the Figure (5.16) presents the 

first differencing applied to the sample autocorrelation function (ACF) and the sample 

partial autocorrelation function (PACF) of the noise series. 

 

 

 
Figure (5.16) ACF and PACF of First Difference of Noise Series for Traffic  

           Accidents  

 

After analyzing the ACF and PACF plots, it is observed that the ACF cuts off 

after lag 1, and the PACF shows exponential decay for the time series data. Based on 
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these observations, the ARIMA (0, 1, 1) model is chosen as the tentative model for 

further analysis and forecasting. 

 

5.4.6  Parameter Estimation of Transfer Function – Noise Model 

 The analysis suggests that the ARIMA (0, 1, 1) model provides the fit for the 

noise series. The corresponding estimated parameters and statistic for the ARIMAX-

TFM (0, 1, 1) model are provided in Table (5.10). 

 

Table (5.10)  

Estimation of Parameter and their Statistics for ARIMAX-TFM (0, 1, 1) of 

Traffic Accidents  

Source: Own Calculation 

***denotes significant at 1% level, *denotes significant at 10% level  

  

From above Table (5.10), the transfer function - noise model is 

 𝑌𝑡 = 𝜔1𝑋1,𝑡 + 𝜔2𝑋2,𝑡 + 𝜔3𝑋3,𝑡 +
(1−𝜃1𝐵)

(1−𝐵)
𝑒𝑡 

      = −0.415𝑋1,𝑡 + 0.099𝑋2,𝑡 − 0.250𝑋3,𝑡 +
(1−0.410𝐵)

(1−𝐵)
𝑒𝑡  

  The fitted ARIMA (0, 1, 1) model for traffic accidents gives 𝜃1 = 0.410, 𝜔1 =

−0.415,   𝜔2 = 0.099,  𝑎𝑛𝑑  𝜔3 = −0.250.  The test statistic (t) reveal statistical 

significance at the 1% level for θ1 and ω2, while ω1 and ω3 demonstrate significance at 

the 10% level. 

 

5.4.7  Diagnostic Checking for Transfer Function – Noise Model 

   Figure (5.17) illustrates the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the residuals obtained from fitting the 

ARIMAX_TFM (0, 1, 1) model. 

 

Parameters Estimates S.E T Sig 

𝜔1 -0.415* 0.215 -1.928 0.056 

𝜔2 0.099*** 0.036 2.733 0.007 

𝜔3 -0.250* 0.147 -1.706 0.091 

𝜃1 0.410*** 0.091 4.497 0.000 
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Figure (5.17)  ACF and PACF of Residual Noise Series for Traffic Accidents  

 

 As depicted in Figure (5.17), the ACF and PACF of the residuals representing the 

transfer function-noise of traffic accidents remain within the limits of two standard 

errors except lag 14. This indicates that the residual series follows a white noise 

process, affirming the adequacy of the transfer function-noise model for future value 

forecasting. To further assess the autocorrelation among the residuals, the Ljung-Box 

(Q) test statistic was employed. Table (5.11) displays the test statistic and 

corresponding p-values for the residuals of the Transfer Function-Noise Model in 

relation to traffic accidents. 

Table (5.11)  

Model Statistics of ARIMAX-TFM (0, 1, 1) for Traffic Accidents  

Model 
Ljung-Box Q (18) 

Statistic Df Sig 

ARIMAX-TFM 19.248 17 .314 

 Source: Own Calculation 

 

  After examining Table (5.11), it is evident that the observed value of Q is 

19.248, which is not statistically significant due to the p-value of 0.314 exceeding the 

significance level of 0.05. This suggests that there is no autocorrelation among the 

residuals. Therefore, the ARIMAX-TFM is considered appropriate for effectively 
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modeling the data series of traffic accidents in Yangon. A comparison between the 

ARIMA model, Intervention model, and ARIMAX-TFM for traffic accidents was 

illustrated in Section (5.5). 

 

5.5  Comparison between ARIMA Model, Intervention Model and   

ARIMAX- TFM for Traffic Accidents     

    The criteria for model comparison are different from the model identification 

methods. Model identification tools such as ACF, PACF, IACF, and ESACF are used 

only for identifying adequate models. Residuals from all adequate models are 

approximately white noise. The selection criterion is normally based on summary 

statistics from residuals computed from a fitted model or forecast errors.  The 

comparison between ARIMA model, intervention model and ARIMAX-TFM by 

using AIC, BIC, MAE, MAPE and RMSE described in Table (5.12).  

 

Table (5.12) 

Comparison between ARIMA Model, Intervention Model and ARIMAX-TFM 

for Traffic Accidents  

Model AIC BIC MAE MAPE RMSE 

ARIMA (0, 1, 1) 716.856 719.643 15.143 16.514 19.674 

ARIMA (1, 0, 0) with 

Intervention 
707.969 710.748 14.527 13.5204 19.420 

ARIMAX-TFM (0, 1, 1) 419.661 422.440 3.787 3.341 5.759 

Source: Own Calculation 

 

 The ARIMAX-TFM (0, 1, 1) model demonstrates the minimum AIC and BIC 

values compared to the alternative models. Additionally, when considering forecast 

errors such as MAE, MAPE, and RMSE, the ARIMAX-TFM (0, 1, 1) model yields 

the smallest values among the three models. As a result, the ARIMAX-TFM (0, 1, 1) 

model is deemed the most suitable for accurately fitting the traffic accidents in 

Yangon. Furthermore, this model is employed to forecast the series of traffic 

accidents in Yangon. 
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5.6  Forecasting Traffic Accidents  

 The actual values, forecast values, lower confidence limits and upper 

confidence limits for three periods (January 2023 to March 2023) are obtained and 

shown in Table (5.13) and Figure (5.18). 

 

Table (5.13)  

Forecast Values from January to March, 2023 for Traffic Accidents  

Month/ Year Jan-2023 Feb-2023 Mar-2023 

Actual Values 44 50 44 

Forecast Values 42 39 35 

95% 

Limit 

LCL 4 -6 -15 

UCL 80 83 84 

         Source: Own Calculation 

  

 
Figure (5.18) Forecast Values with 95% Confidence Limit for Traffic     

Accidents  

 

  The findings of this study suggest that the forecast values obtained from the 

ARIMAX-TFM (0, 1, 1) model are generally lower than the actual values for traffic 

accidents in February and March 2023. However, they generally fall within the 95% 

lower and upper confidence limits. The difference between the estimated value and 

the actual value is due to the fact that drivers and road users in the Yangon municipal 

area follow the established rules and regulations but not fully established ones. 

Notably, there is a relatively close match between the actual and forecast values for 
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February 2023. The upcoming section provides a detailed description of the time 

series analysis conducted for traffic fatalities in Yangon.  

 

5.7 Time Series Analysis of Road Traffic Fatalities  

 The numbers of traffic fatalities resulting from monthly road traffic fatalities 

during the period from 2013 to 2022 are summarized in Table (5.14). This data was 

obtained from the No. (2) Office of Traffic Police in Yangon. 

 

Table (5.14) 

Monthly Traffic Fatalities  

Month/ 

Year 
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Jan 21 28 34 38 46 29 44 29 25 25 

Feb 21 32 32 34 33 27 34 36 23 32 

Mar 30 36 23 43 24 35 37 21 9 33 

Apr 24 33 34 30 44 31 25 18 22 29 

May 30 37 28 45 31 37 46 25 18 37 

Jun 27 33 28 26 31 41 34 33 25 21 

Jul 19 25 30 34 34 30 27 32 17 27 

Aug 20 22 20 24 37 30 32 33 20 29 

Sep 31 29 26 29 25 21 25 25 18 23 

Oct 53 29 43 27 29 31 25 28 29 18 

Nov 30 34 28 34 29 33 30 37 22 14 

Dec 36 44 39 27 40 41 23 21 27 22 

 Source: No. (2)  Office of Traffic Police (Yangon) 

  

 According to the Table (5.14), it can be observed that the traffic fatality rate 

reached its peak in 2017 and hit its lowest point in 2021. October 2013 witnessed the 

highest recorded number of traffic fatalities, with 53 deaths, whereas the lowest count 

was 9 in March 2021. The decline in fatalities during March 2021 can be attributed to 

the reduced number of vehicles and individuals on the roads and streets due to the 

significant prevalence of Covid-19 infections that year. The trends of monthly traffic 

fatalities in Yangon are illustrated in Figure (5.19). Based on the analysis of the 

picture, there is no apparent evidence of seasonality observed during the study period 

from January 2013 to December 2022. Analyzing the seasonality of traffic fatalities in 

Yangon is displayed in Appendix Table (C-1).  
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Figure (5.19)   Monthly Traffic Fatalities  

Source: Table (5.14) 
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5.7.1 Test of Trend for Traffic Fatalities  

 The series exhibits trend or not is tested as follows: 

 Hypotheses 

       Null Hypothesis: There is no trend for traffic fatality in Yangon. 

Alternative Hypothesis: There is a positive or negative trend for traffic fatality 

in Yangon. 

 

Table (5.15) 

Statistical Test of Trend for Traffic Fatalities 

t-Test Statistic Critical Value Observations 

0.010 1.984 120 
         Source: Own Calculation 

 Based on the information presented in Table (5.15), the test statistic is 0.010, 

and the critical value is 1.984. Since the test statistic is lower than the critical value, it 

can be concluded that there is no significant trend observed for traffic fatalities in 

Yangon from 2013 to 2022. 

 

5.7.2 Test of Stationarity for Traffic Fatalities  

In this section, the Augmented Dickey-Fuller test was employed to assess 

stationarity. The results of the stationary test conducted on the traffic fatalities series 

in Yangon, utilizing monthly time series data from January 2013 to December 2022, 

are presented in Table (5.16). 

 

Table (5.16) 

Augmented Dickey-Fuller Test for Traffic Fatalities 

 t-statistic p-value 

Augmented Dickey-Fuller test statistic - 4.8776 0.0001 

Test critical value 1% level -3.4866  

5% level -2.8861  

10% level -2.5800  

Source: Appendix (D-1) 

Hypotheses 

𝐻0: The recorded number of traffic fatalities has a unit root (i.e., The recorded number 

of traffic fatalities is non-stationary). 
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𝐻1: The recorded number of traffic fatalities does not have a unit root (i.e., The 

recorded number of traffic fatalities is stationary).  

 From the Table (5.16), it can be observed that the calculated test statistic for 

ADF is - 4.8776, which is lower than all the critical values (-3.4866, -2.8861, and -

2.5800), and the corresponding p-value is 0.0001. As a result, there is sufficient 

evidence to reject the null hypothesis. Therefore, it can be concluded that the traffic 

fatalities series exhibits stationarity. The analysis of the traffic fatalities data using the 

ARIMA model, Intervention model, and ARIMAX-TFM model can be found in 

Sections 5.8 to 5.10. 

 

5.8 ARIMA Model for Traffic Fatalities  

 In time series analysis, the identification and construction of a suitable model 

based on the available data are crucial steps. The ARIMA approach consists of three 

fundamental stages: model identification, parameter estimation, and diagnostic 

checking. 

 

5.8.1 Model Identification  

 From January 2013 to December 2022, a total of 3,554 traffic fatalities were 

reported in Yangon. The Figure (5.20) depicts the original series of traffic fatalities in 

Yangon. 

 

 Figure (5.20)  Original Series of Traffic Fatalities  
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 Regarding Figure (5.20), the original series of traffic fatalities in Yangon 

displays fluctuations that are consistently around a constant mean, and the variance 

does not appear to change throughout the period. This plot suggests that the series is 

stationary. The primary method of identification is analyzing the sample 

autocorrelation function (ACF) and the sample partial autocorrelation function 

(PACF) for traffic fatalities in Yangon, as depicted in Figure (5.21). 

 

 

 
 

Figure (5.21)  Sample Correlogram of the Original Series of Traffic 

Fatalities  

 

Based on the ACF and PACF plots in Figure (5.21), it can be seen that both 

the ACF and PACF spikes at lag 2. Therefore, the ARIMA (0, 0, 2), (2, 0, 0), and (2, 

0, 2) models are initially considered as tentative models. Among these, the ARIMA 
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(2, 0, 2) model shows no significance for all parameters. Consequently, the AIC and 

BIC values are utilized to select the fitted model. The ARIMA (2, 0, 0) model exhibits 

the lowest AIC and BIC values, leading to its selection as the preferred tentative 

model. 

 

5.8.2 Parameter Estimation 

Using the ARIMA (2, 0, 0) model, the estimated parameters with their 

statistics are shown in Table (5.17).  

 

Table (5.17) 

Estimated Parameters and their Statistics for ARIMA (2, 0, 0) Model of  

 Traffic Fatalities  

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level 

 

 From above Table (5.17), the fitted model is 

       (1− 𝜙1𝐵 − 𝜙2𝐵2 )𝑌𝑡 = 𝜃0 + 𝑒𝑡 

  (1 – 0.228B− 0.225𝐵2) 𝑌𝑡 = 29.426 + 𝑒𝑡 

          (0.090)   (0.092)             (1.161)    

   

   The fitted ARIMA (2, 0, 0) model for traffic fatality provides the following 

parameter estimates: 𝜃0 = 29.426, 𝜙1= 0.228 and 𝜙2= 0.225. The estimated standard 

errors for these parameters are 1.161, 0.090, and 0.092, respectively. The test statistic 

t-value for   𝜃0,  𝜙1 𝑎𝑛𝑑  𝜙2 are statistically significant at the 1% level and 5% level, 

respectively. 

 

  

Parameters Estimates S.E t Sig 

𝜃0 29.426*** 1.161 25.354 0.000 

𝜙1 0.228** 0.090 2.536 0.013 

𝜙2 0.225** 0.092 2.447 0.016 
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5.8.3  Diagnostic Checking  

  The autocorrelation function (ACF) and partial autocorrelation function 

(PACF) for the residuals of the fitted ARIMA (2, 0, 0) model are shown in Figure 

(5.22). 

 
Figure (5.22) ACF and PACF of Residuals for the ARIMA (2, 0, 0) Model 

   

  According to Figure (5.22), the residual values of the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) for traffic fatalities fall within the 

two standard error limits. This suggests that the residual series of the fitted ARIMA 

(2, 0, 0) model can be considered a white noise process. Subsequently, the 

autocorrelation among the residuals is checked using the Ljung-Box test statistic (Q). 

The test statistic, along with their corresponding p-values, for the residuals of the 

fitted ARIMA (2, 0, 0) model for traffic fatalities, are presented in Table (5.18). 

 

Table (5.18) 

Model Statistics for ARIMA (2, 0, 0) Model on Traffic Fatalities  

Model 
Ljung-Box Q (18) 

Statistic Df Sig 

ARIMA (2, 0, 0) 17.488 16 .355 

 Source: Own Calculation 
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 As indicated in Table (5.18), the computed value of Q is 17.488, and its 

associated p-value is 0.355. Consequently, the observed p-value is not statistically 

significant, suggesting the absence of significant autocorrelation among the residuals. 

Therefore, the ARIMA (2, 0, 0) model is considered adequate for fitting the data 

series of Traffic Fatalities in Yangon. 

 

5.9  Intervention Analysis of Traffic Fatalities  

  Interventions can impact the response in various ways, including abruptly 

transforming the level of a series, causing a delayed effect, altering the trend, or 

inducing more complex effects. As initially demonstrated by Box and Tiao in 1975, 

transfer functions can be employed to model intervention effects and ascertain 

whether there is evidence of a change in the series, along with its nature and 

magnitude. Among the methods available for evaluating the effects of an intervention 

or legislation, ARIMA interrupted time series analysis (also known as ARIMA 

intervention analysis) has been found to be the most efficient.  

 The interventions under examination include the Motor Vehicle Law, 

Permission to Import Vehicle Law, Vehicle Safety and Motor Vehicle Management 

Law, Myanmar's political changes, and the Covid-19 pandemic. In Myanmar, the 

Motor Vehicle Law was nationally enacted in September 2015, followed by the 

promulgation of the Permission to Import Vehicles Law in November 2016, but the 

law came into effect in January 2017. The Vehicle Safety and Motor Vehicle 

Management Law came into effect in April 2020 and remains in place to date. 

Myanmar's political changes began in February 2021, while the Covid-19 pandemic 

struck in March 2021. The impact of these government policies (interventions) is 

crucial in analyzing the time series data of traffic fatalities. 

 

5.9.1  Model Identification  

  In Myanmar, the impact of the intervention in the Motor Vehicles Law, which 

was enacted in September 2015, and the promulgation of the Permission to Import 

Vehicles Law in January 2017, along with the enactment of the Vehicle Safety and 

Motor Vehicles Management Law in April 2020, and the political changes and the 
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Covid-19 pandemic in March 2021, affected the traffic accidents, as displayed in 

Figure (5.23). 

 

 

 
 

Figure (5.23)  Intervention of Traffic Fatalities  

 

The ARIMA modeling was identified using the data from the 1st data point to 

the 32 monthly observations before the intervention.  Based on Figure (5.23), it can 

be seen that the data is characterized by stationarity in terms of both mean and 

variance. The stationarity test for the pre-intervention series of traffic fatalities is 

described in (Appendix D-4). Therefore, no transformation is needed to achieve 

stationarity. Model identification involves analyzing the sample autocorrelation 

function (ACF) and the sample partial autocorrelation function (PACF) for traffic 

fatalities in Yangon, as plotted in Figure (5.24). 
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     Figure (5.24) ACF and PACF of Pre-intervention Series for Traffic                        

Fatalities  

 

   The ACF and PACF values exhibit no pattern and fall within the two-

standard-error limit. As a result, the ARIMAX (0, 0, 0) model is considered a 

tentative model for representing traffic fatalities in Yangon. 

 

5.9.2  Parameter Estimation  

    The intervention for the Motor Vehicle Law occurred in September 2015, for 

the Permission to Import Vehicle Law in January 2017, for the Vehicle Safety and 

Motor Vehicles Management Law in April 2020, and for the political changes and the 

Covid-19 pandemic in March 2021. The Motor vehicle Law represents an intervention 

𝑆1 which might be expected to produce a step change. The Permission to Import 

Vehicle Law represents an intervention, 𝑆2. The Vehicle Safety and Motor Vehicles 

Management Law represent an intervention 𝑃1, which might be expected to produce a 

pulse change. The political changes and the Covid-19 pandemic represent an 
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intervention 𝑆3, which might be expected to produce a step change. These 

interventions can be represented as follows:  

  S1 =  {
0       if t < 33 (September 2015)
1      if t ≥ 33 (September 2015)

 

   S2 =  {
0       if t < 49 (January 2017)
1      if t ≥ 49 (January 2017)

   

     P1 =  {
0       if t ≠ 88 (April 2020)
1      if t = 88 (April 2020)

 

   S3 =  {
0       if t < 99 (March 2021)
1      if t ≥ 99 (March 2021)

 

The estimated values of the parameters are displayed in the Table (5.19). 

Table (5.19) 

Estimation of Parameters and their Statistics for ARIMA (0, 0, 0) Model  

with Intervention  

Parameter Estimates Std. Error t Sig. 

𝜃0 29.937*** 1.218 24.578 0.000 

ω1 4.25** 2.11 2.014 0.046 

ω2 -3.427* 1.997 -1.716 0.089 

ω3 -13.078* 6.934 -1.886 0.062 

δ 0.275 0.477 0.576 0.566 

ω4 -6.57*** 1.812 -3.627 0.000 

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level, *denotes significant    

at 10% level 
 

 From the above table, the estimate of δ is not significant, so the parameter δ is 

dropped, and the estimation results are described in Table (5.20). 

 

Table (5.20) 

Estimation of Parameters and their Statistics for ARIMA (0, 0, 0) Model  

with Intervention (without δ) 

Parameter Estimates Std. Error t Sig. 

𝜃0 29.938*** 1.215 24.637 0.000 

ω1 4.250** 2.105 2.019 0.046 

ω2 -3.534* 1.979 -1.786 0.077 

ω3 -12.653* 6.944 -1.822 0.071 

ω4 -6.463*** 1.793 -3.605 0.000 

Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level, *denotes significant    

at 10% level 
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From the Table (5.20), the fitted model is 

         Yt =𝜃0 + ω1S1 + ω2S2 + ω3P1 + ω4S3 + et 

             = 29.938 + 4.250 S1 − 3.534 𝑆2 −12.653 P1 − 6.463 S3 

  The fitted ARIMAX (0, 0, 0) model with intervention of traffic fatality give 

𝜃0 = 29.938, 𝜔1 = 4.250,   𝜔2 = -3.534, 𝜔3 = −12.653,  and 𝜔4= -6.463 with the 

estimated standard errors of 1.215, 2.105, 1.979, 6.944, and 1.793, respectively. The 

test statistic t for 𝜃0 𝑎𝑛𝑑 𝜔4 are statistically significant at 1% level,  𝜔2 𝑎𝑛𝑑 𝜔3 are 

statistically significant at 10% level and 𝜔1 is 5% level respectively. 

  Based on the parameter estimates in Table (5.20), the estimated coefficient of 

the Motor Vehicle Law is statistically significant at the 5% level. The positive effect 

suggests that the implementation of this law is associated with an increase in traffic 

fatalities. After the law is implemented, there tends to be a higher number of traffic-

related deaths. The estimated coefficient of the Permission to Import Vehicle Law is 

statistically significant at the 10% level. The negative effect indicates that the 

implementation of this law is associated with a decrease in traffic fatalities. After the 

law is implemented, there tends to be a reduction in the number of traffic-related 

deaths.  

  The estimated coefficient of the Vehicle Safety and Motor Vehicles 

Management Law is statistically significant at the 10% level. The negative effect 

suggests that the implementation of this law is associated with a decrease in traffic 

fatalities. After the law is implemented, there is a tendency for a reduction in the 

number of traffic-related deaths. The estimated coefficient of political changes and 

Covid-19 pandemic is statistically significant at the 1% level. The negative effect 

suggests that political changes and the occurrence of the Covid-19 pandemic are 

associated with a decrease in traffic fatalities. During political changes and the third 

wave of Covid-19, there tends to be a reduction in the number of traffic-related 

deaths.  

  

5.9.3   Diagnostic Checking  

   The residuals ACF and PACF for the fitted ARIMA (0, 0, 0) model with 

intervention are shown in Figure (5.25). 
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Figure (5.25)  ACF and PACF of Residuals for ARIMA (0, 0, 0) model 

with Intervention 

   

 According to the Figure (5.25), the residual values of the ACF and PACF for the 

intervention of traffic fatalities fall within the two standard errors limits. Thus, the 

residual series of the fitted ARIMA (0, 0, 0) model with intervention are white noise 

process. The test statistic with the corresponding p-values of the residuals of the fitted 

ARIMA (0, 0, 0) Model with Intervention for traffic fatalities are shown in Table 

(5.21). 

 

Table (5.21) 

Model Statistics of ARIMAX (0, 0, 0) Model with Intervention for  

Traffic Fatalities  

Model 
Ljung-Box Q (18) 

Statistic Df Sig 

ARIMA (0,0,0) 

with Intervention 
18.640 18 .414 

 Source: Own Calculation 
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   As displayed in Table (5.21), the observed value of Q amounts to 18.640. The 

corresponding p-value, which is 0.414, is greater than the significance level of 0.05. 

This outcome implies that the observed p-value is not statistically significant, thus 

indicating the absence of autocorrelation among the residuals. Thus, ARIMA (0, 0, 0) 

model with intervention is adequate to fit the data series of traffic fatalities in Yangon 

and it can be used to forecast the future values of traffic fatalities in Yangon. 

 

5.10  ARIMAX-TFM for Traffic Fatalities 

 In this study, we used the ARIMAX-TFM to examine the relationship between 

traffic fatalities and factors such as over speeding, reckless driving, and pedestrian 

negligence. The dependent variable in our analysis was traffic fatalities, while the 

independent variables were over speeding, reckless driving, and pedestrian 

negligence. The ARIMAX-TFM was employed to assess autocorrelations within the 

series and eliminate them, resulting in a white noise series. We determined the 

suitable orders (b, r, and s) based on the CCF plot results and then proceeded to find 

the noise model. 

 

5.10.1 Identification of ARIMA Models for Input Series 

 The time series plots of traffic fatalities (𝑌𝑡), over speeding (𝑋1,𝑡), reckless 

driving (𝑋2,𝑡) and pedestrian negligence (𝑋3,𝑡) are illustrated in Figure (5.26). 

 

 

Figure (5.26) Time Series Plots of Dependent Variable (𝒀𝒕) and Independent 

Variables (𝑿𝟏,𝒕,  𝑿𝟐,𝒕, 𝑿𝟑,𝒕 ) 
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The Figure (5.26) provides information regarding the stationary or non-

stationary nature of the series. Section (5.7.2) discusses the process of examining 

stationarity for the output series, while the analysis for the remaining input series is 

available in Appendix Table (D-6). The time series plots in Figure (5.26) demonstrate 

fluctuations around a constant mean, indicating that the input series are stationary 

throughout the observed period. In Figure (5.27) present the sample autocorrelation 

function (ACF) and sample partial autocorrelation function (PACF) plots for over 

speeding, reckless driving, and pedestrian negligence. 

Over Speeding 

 

 
Reckless Driving 

 

 

Pedestrian Negligence 

 
Figure (5.27)  ACF and PACF Plots of the Input Series of Traffic Fatalities  
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After reviewing Figure (5.27), it is evident that the autocorrelation function 

(ACF) and partial autocorrelation function (PACF) fall within the bounds of two 

standard error limits for overspeeding and pedestrian negligence. Consequently, an 

ARIMA (0, 0, 0) model is selected as the tentative model for these two variables. In 

the case of reckless driving, the ACF plot displays a tails off pattern, and the PACF 

plot demonstrates a cutoff at lag 2. Therefore, the ARIMA (2, 0, 0) model is deemed 

suitable as the tentative model for modeling reckless driving. 

 

5.10.2 Parameter Estimation for Input Series 

 The estimated parameter values for the fitted ARIMA (0, 0, 0), ARIMA (2, 0, 

0), and ARIMA (0, 0, 0) models are presented in Table (5.22). 

 

Table (5.22) 

Estimation of Parameter and their Statistics for ARIMA Models for  

Input Series 

Input Series Model Parameters Estimates S.E t Sig 

Over 

Speeding 

ARIMA 

(0, 0, 0) 

𝜃0 3.517*** 0.207 16.960 .000 

Reckless 

Driving 

ARIMA 

(2, 0, 0) 

𝜃0 

∅1 

∅2 

18.110*** 

0. 304*** 

0.264*** 

1.227 

0.089 

0.091 

14.765 

3.406 

2.918 

.000 

.001 

.004 

Pedestrian 

Negligence 

ARIMA 

(0, 0 , 0) 

𝜃0 4.667*** 0.201 23.263 .000. 

      Source: Own Calculation 

     ***denotes significant at 1% level  

 

5.10.3 Diagnostic Checking for Input Series 

 The residual values of the ACF and PACF for the over speeding, reckless 

driving and pedestrian negligence are within the bounds of two standard errors, as 

indicated in Appendix Table (D-7). 

 

5.10.4 Cross Correction Function for Input Series 

 The cross-correlation function was applied between the input series, output 

series, and the impulse response estimate. This cross-correlation analysis was 
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conducted on each prewhitened input and output series. The results of the cross-

correlation function are depicted in Figure (5.28). 

 

Over Speeding 

 
 

 

Reckless Driving 

 

 
 

 

Pedestrian Negligence 

 

 
 

Figure (5.28) CCF Plots between Output Series and Input Series of Traffic 

Fatalities  
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5.10.5  Identification of Transfer Function – Noise Model 

  The ARIMA model for noise series is displayed in Figure (5.29). 

 
Figure (5.29)  Plot of Noise Series for Traffic Fatalities  

 

Regarding to the Figure (5.28), the noise series for traffic fatalities is stationary. 

The analysis of sample autocorrelation function (ACF) and the sample partial 

autocorrelation function (PACF) for noise series as shown in the Figure (5.30): 

 

Figure (5.30)  ACF and PACF of Noise Series for Traffic Fatalities  

 

According to Figure (5.30), both the ACF and PACF plots exhibit a tails off. 

Utilizing the information from the ACF and PACF plots, an ARIMA (1, 0, 1) model is 

considered as the tentative model. 

 

5.10.6  Parameter Estimation of Transfer Function – Noise Model 

 The estimated parameters and corresponding statistic for the ARIMA (1, 0, 1) 

model are presented in Table (5.23).  
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Table (5.23) 

Estimation of Parameters and their Statistics for ARIMAX-TFM (1, 0, 1) Model 

of Traffic Fatalities  

 Source: Own Calculation 

 ***denotes significant at 1% level, **denotes significant at 5% level 

 

From above Table (5.23), the transfer function - noise model is 

  𝑌𝑡 = 𝜔1𝑋1,𝑡 + 𝜔2𝑋2,𝑡 + 𝜔3𝑋3,𝑡 +
(1−𝜃1𝐵)

(1−𝜙1𝐵)
𝑒𝑡 

       =1.342𝑋1,𝑡 + 1.078𝑋2,𝑡 + 1.051𝑋3,𝑡 +
(1−0.759𝐵)

(1−0.385𝐵)
𝑒𝑡  

 

    The ARIMAX (1, 0, 1) model fitted to the traffic fatalities data yields the 

following parameter estimates: ω1 = 1.342, ω2 = 1.078, ω3 = 1.051, ϕ1 = 0.385, and θ1 

= 0.759. All test statistic (t) for these parameter values demonstrate statistical 

significance at the 1% level except for ϕ1, which shows significance at the 5% level. 

 

5.10.7  Diagnostic Checking for Transfer Function – Noise Model 

  The tentative overall model residual ACF and PACF for the fitted ARIMAX-

TFM (1, 0, 1) model are depicted in Figure (5.31). 

 

Parameters Estimates S.E t Sig 

𝜔1 1.342*** 0.268 5.015 0.000 

𝜔2 1.078*** 0.058 18.530 0.000 

𝜔3 1.051*** 0.261 4.020 0.000 

𝜙1 0.385** 0.176 2.188 0.031 

𝜃1 0.759*** 0.133 5.728 0.000 
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Figure (5.31) ACF and PACF of Residual Noise Series for Traffic Fatalities  

   

 Based on Figure (5.31), the residual values of the ACF and PACF for the 

transfer function-noise of traffic fatalities generally fall within the two standard error 

limits. Therefore, the residual series can be considered a white noise process, 

indicating that the transfer function-noise model is suitable for forecasting future 

values of the series. To further assess the autocorrelation among residuals, the Ljung-

Box test statistics are utilized. The test statistics and corresponding p-values for the 

residuals of the transfer function-noise model for traffic fatalities are presented in 

Table (5.24). 

 

Table (5.24) 

Model Statistics of ARIMAX-TFM (1, 0, 1) Model for Traffic Fatalities  

Model 
Ljung-Box Q (18) 

Statistic df Sig 

ARIMAX_TFM 11.788 16 .758 

 Source: Own Calculation 

 

  According to Table (5.24), the computed value of Q is 11.788. The associated 

p-value, recorded as 0.758, indicates that the test results do not provide evidence of 
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significant autocorrelation among the residuals. This indicates that the ARIMAX-

TFM is suitable for fitting the data series of Traffic Fatalities in Yangon. A 

comparison between the ARIMA model, Intervention Model, and ARIMAX-TFM for 

traffic fatalities is presented in Section (5.11). 

 

5.11  Comparison between ARIMA Model, Intervention Model and ARIMAX- 

TFM for Traffic Fatalities 

  The criteria for model comparison differ from the model identification 

methods. Model identification tools, such as ACF, PACF, IACF, and ESACF, are 

solely utilized to identify suitable models. Residuals from all appropriate models 

exhibit characteristics of white noise. The selection criterion is typically based on 

summary statistics derived from residuals computed from a fitted model or forecast 

errors. In Table (5.25), the comparison between the ARIMA model, intervention 

model, and ARIMAX-TFM model is conducted using evaluation metrics such as AIC, 

BIC, MAE, MAPE, and RMSE. 

 

Table (5.25) 

Comparison between ARIMA Model, Intervention Model and ARIMAX-TFM 

for Traffic Fatalities  

Model AIC BIC MAE MAPE RMSE 

ARIMA (2, 0, 0) 469.629 472.417 5.376 20.089 6.920 

ARIMA  (0, 0, 0) with 

Intervention 
454.317 457.104 5.123 19.128 6.842 

ARIMAX-TFM (1, 0, 1) 203.671 208.081 1.800 6.231 2.298 

Source: Own Calculation 

   

 Based on the AIC and BIC, the minimum values are occurred in ARIMAX-TFM 

(1, 0, 1) model. Then alternative criteria for model selection can be based on forecast 

errors such as MAE, MAPE and RMSE values for ARIMAX-TFM (1, 0, 1) model is 

the smallest among three models. Therefore, ARIMAX-TFM (1, 0, 1) model is the 

most suitable to fit the Traffic Fatalities in Yangon and this model is used to forecast 

the Traffic Fatalities series in Yangon. 
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5.12  Forecasting Traffic Fatalities  

 The actual values, forecast values, lower confidence limits and upper 

confidence limits for three periods (January 2023 to March 2023) are obtained and 

shown in Table (5.26) and Figure (5.32). 

 

Table (5.26) 

Forecast Values from January to March, 2023 for Traffic Fatalities  

Month/ Year Jan-2023 Feb-2023 Mar-2023 

Actual Values 17 29 15 

Forecast Values 24 26 27 

95% 

Limit 

LCL 19 21 22 

UCL 29 31 32 

   Source: Own Calculation 

    

 
Figure (5.32) Forecast Values with 95% Confidence Limit for Traffic 

Fatalities  

 The results of this study indicate that there is a disparity between the actual values 

and forecast values obtained from the ARIMAX-TFM (1, 0, 1) model. Specifically, it was 

observed that the forecast values for January and March were not very close to the actual 

values. The reason behind this discrepancy is the adherence to the set traffic rules. 

Nevertheless, the forecast values fall within the specified confidence limits. The analysis 

of traffic injuries in Yangon was detailed in Section (5.13). 
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5.13 Time Series Analysis of Road Traffic Injuries  

 The numbers of traffic injuries resulting from monthly road traffic accidents 

during the period from 2013 to 2022 are summarized in Table (5.27). These data are 

obtained from No. (2) Office of Traffic Police, Yangon. 

 

Table (5.27) 

Monthly Traffic Injuries  

Month / 

Year 
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Jan 206 315 289 212 214 136 155 94 97 64 

Feb 178 278 204 230 190 126 115 105 33 39 

Mar 255 217 240 273 210 155 166 107 8 54 

Apr 263 339 248 179 248 220 130 88 30 60 

May 266 227 186 161 167 156 143 92 32 57 

Jun 245 242 250 163 159 210 131 167 53 94 

Jul 195 265 211 178 169 114 122 132 30 61 

Aug 248 198 191 116 113 114 152 122 70 48 

Sep 223 216 187 159 128 114 84 78 27 47 

Oct 310 192 200 163 125 142 96 55 37 33 

Nov 290 179 212 182 155 136 120 88 69 55 

Dec 276 258 191 160 183 153 116 90 39 42 

 Source: No. (2) Office of Traffic Police (Yangon) 

 

 The trend of monthly traffic injuries in Yangon is shown in Figure (5.32). In 

the figure, it can be observed that the largest number of traffic injuries occurred in 

April 2014, while the smallest number occurred in March 2021.  The decrease in 

traffic injuries in 2021 can be attributed to the higher incidence of COVID-19 

infections during that year, resulting in fewer vehicles and people on the roads and 

streets. However, there was a slight increase in the number of traffic injuries in 2022. 

Figure (5.33) demonstrates that the data exhibits no discernible seasonal variation.  

The findings from the analysis of seasonal patterns in traffic injuries in Yangon are 

displayed in Appendix Table (C-1).  
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          Figure (5.33)   Monthly Traffic Injuries  

           Source: Table (5.27). 
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5.13.1 Test of Trend for Traffic Injuries  

 The series exhibits trend or not is tested as follows: 

 Hypotheses 

        Null Hypothesis: There is no trend for traffic injury in Yangon. 

     Alternative Hypothesis: There is a positive or negative trend for traffic 

injury in Yangon. 

 

Table (5.28) 

Statistical Test of Trend for Traffic Injuries 

t-Test Statistic Critical Value Observations 

- 4.999 1.984 120 

   Source: Own Calculation 

 

  Based on Table (5.28), the test statistic |-4.999| = 4.999, while the critical 

value is 1.984. As a result, the test statistic exceeds the critical value. Therefore, we 

conclude that there is a trend for traffic injuries in Yangon from 2013 to 2022. 

 

5.13.2 Test of Stationarity for Traffic Injuries  

In this section, the Augmented Dickey-Fuller test was utilized to test the 

stationarity of the traffic injuries series in Yangon. The results of the test, conducted using 

monthly time series data from January 2013 to December 2022 are presented in Table 

(5.29). 

Table (5.29) 

Augmented Dickey-Fuller Test for Traffic Injuries 

Before first difference After first difference 

t-Statistic Prob t-Statistic Prob 

Augmented Dickey-

Fuller test statistic 

-1.1998 0.6730 Augmented Dickey-

Fuller test statistic 

-11.8543 0.0000 

Test 

critical 

values: 

1% level -3.4870  Test 

critical 

values: 

1% level -3.4870  

5% level -2.8863  5% level -2.8863  

10% level -2.5800  10% level -2.5800  

Source: Appendix (E-1) 
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Hypotheses 

𝐻0: The recorded number of traffic injuries has a unit root (i.e., the recorded number 

of traffic injuries is non-stationary). 

𝐻1: The recorded number of traffic injuries does not have a unit root (i.e., the 

recorded number of traffic injuries is stationary.  

 In Table (5.29), the data series is found to be non-stationarity at a 5% level of 

significance prior to the first difference. However, after applying the first difference, 

the ADF test indicates the rejection of the null hypothesis of a unit root at the 5% 

significance level. This suggests that the first difference of the series exhibits 

stationary in terms of mean level. The analysis of the traffic injuries data utilizing the 

ARIMA model, Intervention model, and ARIMAX-TFM model can be found in 

Sections 5.14 to 5.16. 

 

5.14 ARIMA Model for Traffic Injuries  

 In time series analysis, the most crucial steps are to identify and build a model 

based on the available data. ARIMA approach consists of model identification, 

parameter estimation and diagnostic checking. 

 

5.14.1 Model Identification  

 From January 2013 to December 2021, a total of 18,430 traffic injuries were 

reported in Yangon. The original series of traffic injuries in Yangon is depicted in 

Figure (5.34). 

 
 Figure (5.34)  Original Series of Traffic Injuries  
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Regarding Figure (5.33), the original series of traffic injuries in Yangon has 

exhibited a decreasing trend starting from 2013. This decline points toward a negative 

trend within the traffic injuries series, signifying its non-stationary nature. To further 

analyze the series, the sample autocorrelation function (ACF) and sample partial 

autocorrelation function (PACF) for traffic injuries in Yangon have been computed 

and their plots are presented in Figure (5.35). 

 

 

 
Figure (5.35) Sample Correlogram of the Original Series of Traffic    

Injuries  

 

Based on Figure (5.34), it can be observed that the sample autocorrelation 

function (ACF) decays gradually, while the sample partial autocorrelation function 

(PACF) cuts off after lag 2. This confirms the non-stationary of the series, and 

consequently, the first difference of the series is performed to attain stationary. The 

first difference series for traffic injuries in Yangon is illustrated in Figure (5.36). 
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         Figure (5.36)  First Difference Series for Traffic Injuries  

 

The sample ACF and sample PACF for the first difference of the traffic 

injuries series are illustrated in Figure (5.37). 

 

 

 
Figure (5.37)  ACF and PACF of First Difference Series for Traffic Injuries  

 

Figure (5.37) indicates that the ACF and PACF tails off. Therefore, ARIMA 

(1, 1, 1) is chosen as the fitted model. 
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5.14.2 Parameter Estimation 

The estimated parameters and their respective statistic for the fitted ARIMA 

(1, 1, 1) model can be found in Table (5.30). 

 

Table (5.30) 

Estimation of Parameters and their Statistics for ARIMA (1, 1, 1) Model of  

Traffic Injuries  

 Source: Own Calculation 

 ***denotes significant at 1% level 

 From above Table (5.30), the estimated model is 

    (1 − 𝜙1𝐵)(1 − 𝐵) 𝑌𝑡 = 𝜃0 + (1 − 𝜃1𝐵)𝑒𝑡 

      (1 − 0.306𝐵) (1 − 𝐵)𝑌𝑡  = -1.959 + (1 − 0.993𝐵)𝑒𝑡 

     (0.127)                          (0.094)             (0.117) 

    

 The fitted ARIMA (1, 1, 1) model for traffic injury yields parameter estimates of 

𝜃0 = −1.959, 𝜙1 = 0.306 and  𝜃1 = 0.993, accompanied by estimated standard 

errors of 0.127, 0.094 and 0.117, respectively. The test statistic (t-values) for 𝜃0, 𝜙1 

and 𝜃1 demonstrate statistical significance at the 1% level. 

 

5.14.3 Diagnostic Checking  

  Figure (5.38) illustrates the residual autocorrelation function (ACF) and partial 

autocorrelation function (PACF) for the fitted ARIMA (1, 1, 1) model. 

Parameters Estimates S.E t Sig 

𝜃0 -1.959*** 0.127 -15.455 .000 

𝜙1 0.306*** 0.094 3.247 .002 

𝜃1 0.993*** 0.117 8.506 .000 
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 Figure (5.38) ACF and PACF of Residuals for ARIMA (1, 1, 1) Model 

 

To assess the adequacy of the model, all the sample autocorrelation function 

(ACF) and partial autocorrelation function (PACF) values of the �̂�𝑡 (refer to 

Appendix Table: E-11) lie within the confidence limits. This indicates that the 

residual series of the fitted ARIMA (1, 1, 1) model follows a white noise process. 

Subsequently, the autocorrelation among the residuals is examined using the Ljung-

Box test statistic (Q). The test statistics, along with their corresponding p-values, for 

the residuals of the fitted ARIMA (1, 1, 1) Model in the context of traffic injuries, are 

presented in Table (5.31). 

Table (5.31) 

Model Statistics of ARIMA (1, 1, 1) Model for Traffic Injuries 

Model 
Ljung-Box Q (18) 

Statistic df Sig 

ARIMA (1, 1, 1) 21.483 16 .161 

 Source: Own Calculation 

 

  Based on the details in Table (5.31), the computed value of Q is 21.483. 

However, the associated p-value of 0.161 is not statistically significant. This outcome 

implies that there is no substantial evidence indicating the presence of autocorrelation 

among the residuals. Consequently, the ARIMA (1, 1, 1) model is considered 
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appropriate for fitting the data series of traffic injuries in Yangon. Section 5.15 

described intervention analysis of traffic injuries in Yangon. 

 

5.15  Intervention Analysis of Traffic Injuries  

  The intervention under consideration includes the Motor Vehicle Law, 

Permission to Import Vehicles Law, Motor Vehicle Management Law, political 

changes, and the Covid-19 pandemic, affecting all citizens. The influence of 

government policies (intervention) and the pandemic is crucial in analyzing the time 

series data of traffic injuries. 

 

5.15.1  Model Identification 

  Figure (5.39) shows the traffic injuries resulting from the Motor Vehicles 

Law, Permission to Import Vehicle Law, Vehicle Safety, Motor Vehicle Management 

Law, political changes, and the Covid-19 pandemic, which are examined for 

intervention analysis. 

 

 
  Figure (5.39)  Intervention of Traffic Injuries  

  

 In Figure (5.39), the outcomes of the stationarity test for the pre-intervention 

series of traffic injuries are presented, and the detailed results can be referred to in 

(Appendix E-4). These test results confirm the stationarity of the pre-intervention 

series. The key tools for model identification are the analysis of the sample 

autocorrelation function (ACF) and the sample partial autocorrelation function 
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(PACF). The ACF and PACF values for traffic injuries in Yangon have been obtained 

and visualized in Figure (5.40). 

 

 

Figure (5.40) ACF and PACF of First Difference Pre-intervention Series for 

Traffic Injuries  

 

 The plot reveals that both the ACF and PACF values fall within the bounds of 

two standard error limits. As a result, the ARIMA (0, 0, 0) model is tentatively 

regarded as a potential model.  

 

5.15.2 Parameter Estimation  

 The interventions took place at different time points: the Motor Vehicle Law 

intervention occurred in September 2015, the Permission to Import Vehicle Law 

intervention in January 2017, the Vehicle Safety and Motor Vehicles Management 

Law intervention in April 2020, and the political changes and the Covid-19 pandemic 

intervention in March 2021. The Motor Vehicle Law intervention, denoted as S1, is 

anticipated to result in a step change. The intervention of the Permission to Import 

Vehicle Law is represented as P1 and is anticipated to cause a pulse change. The 

Vehicle Safety and Motor Vehicles Management Law intervention represents P2, 

expected to produce a pulse change. Lastly, the political changes and the Covid-19 

pandemic intervention are denoted as S2, which is expected to generate a step change. 

These interventions can be represented as follows:   

 S1 =  {
0       if t < 33 (September 2015)
1      if t ≥ 33 (September 2015)

 

        P1 =  {
0       if t ≠ 49 (January 2017)
1      if t = 49 (January 2017)

   

    P2 =  {
0       if t ≠ 88 (April 2020)
1      if t = 88 (April 2020)

 

     S3 =  {
0       if t < 99 (March 2021)
1      if t ≥ 99 (March 2021)
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 The estimated values of the parameters are displayed in the Table (5.32). 

Table (5.32) 

Estimation of Parameters and their Statistics of ARIMA (0, 0, 0) Model  

with Intervention for Traffic Injuries 

Parameters Estimates Std. Error t Sig. 

𝜃0 241.737*** 6.697 36.098 .000 

𝜔1 -89.870*** 8.865 -10.137 .000 

𝜔2 72.689** 31.047 2.341 .021 

𝛿1 0.747*** .163 4.587 .000 

𝜔3 -58.591*** 14.409 -4.066 .000 

𝛿2 0.995*** .024 41.718 .000 

𝜔4 -51.494** 24.787 -2.077 .040 

 Source: Own Calculation 

 ***denotes significant at 1% level,   **denotes significant at 5% level 

The fitted ARIMA (0, 0, 0) model with the intervention of traffic injury yields 

the following parameter estimates: 𝜃0 = 241.737,   𝜔1 = −89.870, 𝜔2= 72.698, 𝜔3 =

 −58.591,  𝜔4 = −51.494, 𝛿1 = 0.747 𝑎𝑛𝑑 𝛿2 = 0.995. The estimated standard errors for 

these parameters are 6.697, 8.865, 31.047, 14.409, 24.787, 0.163 and 0.024, 

respectively. The test statistic t-values for 𝜃0, 𝜔1, 𝛿1, 𝜔3𝑎𝑛𝑑 𝛿2 are statistically 

significant at the 1% significance level. Furthermore, 𝜔2 and 𝜔4 are statistically 

significant at the 5% significance level. 

 

5.15.3 Diagnostic Checking 

 Figure (5.40) illustrates the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the residuals for the fitted ARIMA (0, 0, 0) model 

with intervention. 
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Figure (5.41)  ACF and PACF of Residuals for ARIMA (0, 0, 0)   model with 

Intervention 

  

According to the Figure, it appears that the residuals do not exhibit characteristics 

of a white noise process. The characteristics of the ACF plot show exponential decay, 

and the PACF plot shows a cut-off after lag 1. Therefore, the ARIMA (1, 0, 0) model 

should be reconsidered as a tentative model and model selection was determined by 

evaluating the AIC and BIC values. The ARIMA (1, 0, 0) model demonstrated the 

lowest AIC and BIC values, indicating a superior fit for the pre-intervention series of 

traffic injuries. 

 

5.15.4  Parameter Estimation 

 The estimated values of the parameters and their statistic for the ARIMA (1, 0, 

0) model with intervention are displayed in Table (5.33). 
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Table (5.33) 

Estimation of Parameters and their Statistics of ARIMA (1, 0, 0) Model  

with Intervention for Traffic Injuries 

Parameters Estimates Std. Error t Sig. 

𝜃0 237.498*** 9.856 24.096 .000 

𝜙1 0.380*** 0.089 4.257 .000 

𝜔1 -84.283*** 12.876 -6.546 .000 

𝜔2 63.956* 33.785 1.893 .061 

𝛿1 0.755*** 0.232 3.256 .001 

𝜔3 -56.365*** 19.717 -2.859 .005 

𝛿2 0.998*** 0.029 34.355 .000 

𝜔4 -50.904 30.803 -1.653 .101 

 Source: Own Calculation 

 ***denotes significant at 1% level,   **denotes significant at 10% level 

 

From Table (5.33), the fitted model is 

       𝑌𝑡 = 𝜃0 + 𝜔1S1 +
𝜔2

(1−𝛿1𝐵)
P1 +

𝜔3

(1−𝛿2𝐵)
P2 + 𝜔4S2 +  

1

(1−𝜙1𝐵)
𝑒𝑡 

            = 237.498 − 84.283S1 +
63.956

(1−0.755𝐵)
P1 −

56.365

(1−0.998𝐵)
P2 − 50.904S3 +

1

(1−0.380𝐵)
𝑒𝑡 

 

The fitted ARIMA (1, 0, 0) model with the intervention of traffic injury yields 

the following parameter estimates: 𝜃0 = 237.498, 𝜙1 = 0.380, 𝜔1 = −84.283, 𝜔2= 

63.956, 𝜔3 =  −56.365,  𝜔4 = −50.904, 𝛿1 = 0.755 𝑎𝑛𝑑 𝛿2 = 0.998. The estimated 

standard errors for these parameters are 9.856, 0.089, 12.876, 33.785, 19.717, 30.803, 

0.232 and 0.029, respectively. The test statistic (t-values) for 𝜃0, 𝜙1 , 𝜔1, 𝛿1, 𝜔3𝑎𝑛𝑑 𝛿2 

are statistically significant at the 1% significance level. Furthermore, 𝜔2  is 

statistically significant at the 10% significance level and 𝜔4 is not statistically 

significant.  

Based on the parameter estimates in Table (5.33), the coefficient of the Motor 

Vehicle Law is statistically significant at the 1% level. The negative effect implies 

that the implementation of this law is associated with a decrease in traffic injuries. 

After the law is implemented, there is a tendency for a reduction in the number of 

traffic-related injuries. Furthermore, the coefficient of the Permission to Import 

Vehicle Law is statistically significant at the 5% level. The positive effect suggests 

that the implementation of this law is associated with an increase in traffic injuries. 
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After the law is implemented, there tends to be a higher number of traffic-related 

injuries. 

 Additionally, the coefficient of the Vehicle Safety and Motor Vehicles 

Management Law is statistically significant at the 1% level. The negative effect 

indicates that the implementation of this law is associated with a decrease in traffic 

injuries. After the law is implemented, there is a tendency for a reduction in the 

number of traffic-related injuries. However, the estimated coefficient of political 

changes and the Covid-19 pandemic is not statistically significant. This implies that 

there is no discernible effect of political changes and the occurrence of the Covid-19 

pandemic. 

 

5.15.3 Diagnostic Checking 

 Figure (5.42) illustrates the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) of the residuals for the fitted ARIMA (1, 0, 0) model 

with intervention. 

 

 
Figure (5.42)  ACF and PACF of Residuals for ARIMA (1, 0, 0)   model with 

Intervention 
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 Based on Figure (5.41), the ACF and PACF residual values for traffic injuries 

are observed to lie within the boundaries defined by two standard error limits. 

Consequently, it can be inferred that the residuals series of the ARIMA (1, 0, 0) 

model with intervention can be considered a white noise process. To further assess the 

autocorrelation among the residuals, the Ljung-Box (Q) test statistic is employed. 

Table (5.34) presents the test statistics alongside their respective  

p-values for the Intervention Model's residuals in relation to traffic injuries. 

 

Table (5.34) 

Model Statistics of ARIMA (1, 0, 0) Model with Intervention for  

Traffic Injuries  

Model 
Ljung-Box Q (18) 

Statistic df Sig 

ARIMAX (1, 0, 0)  with 

Intervention 
22.712 17 .159 

 Source: Own Calculation 

 

  Table (5.34) displays the results, highlighting an observed Q value of 22.712. 

The associated p-value, recorded as 0.159, signifies that no statistically significant 

autocorrelation is evident among the residuals. Therefore, the intervention model is 

considered appropriate for accurately fitting the data series of traffic injuries in 

Yangon. 

 

5.16  ARIMAX-TFM for Traffic Injuries  

 The ARIMAX-TFM identified a correlation between traffic injuries and 

factors such as over speeding, reckless driving, and pedestrian negligence. In this 

model, traffic injuries serve as the dependent variable, while over speeding, reckless 

driving, and pedestrian negligence are considered independent variables. 

 

5.16.1 ARIMA Model for Input Series 

 Figure (5.43) displays a time series plot depicting the relationship between 

traffic injuries (𝑌𝑡), over speeding (𝑋1,𝑡), reckless driving (𝑋2,𝑡) and pedestrian 

negligence (𝑋3,𝑡). 
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Figure (5.43) Time Series Plots of Dependent Variable (𝒀𝒕) and Independent 

Variables (𝑿𝟏,𝒕,  𝑿𝟐,𝒕, 𝑿𝟑,𝒕 ) 

 

 According to the Figure (5.43), the process of checking stationarity is explained in 

Section (5.13.2) for the output series, and the corresponding information can be found in 

(see Appendix Table E-16) for the remaining input series.  In Figure (5.43), the time 

series plots of the inputs series are decreasing year after year. Therefore, the inputs series 

have a negative trend. This shows that the non-stationary behavior of the inputs series. 

The plots of the sample autocorrelation function (ACF) and the sample partial 

autocorrelation function (PACF) of the input series for traffic injuries in Yangon as 

shown in the Figure (5.44): 
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Over Speeding 

 

              Reckless Driving 

 

      Pedestrian Negligence 

 

 

 

Figure (5.44)  ACF and PACF Plots of the Input Series of Traffic Injuries  

 

Based on Figure (5.44), it can be observed that these series are nonstationary, 

requiring differencing to remove the nonstationary in mean. Figure (5.45) illustrates 

the first difference input series for traffic injuries in Yangon. 
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Figure (5.45) First Difference Input Series for Traffic Injuries  

 

Figure (5.46) displays the plots of the sample ACF and sample PACF for the 

first differencing input series of traffic injuries. 
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Over Speeding 

 

 

Reckless Driving 

 

 

 
 

Pedestrian Negligence 

 

 

 

Figure (5.46) ACF and PACF of First Difference Input Series for Traffic 

Injuries  

 

By analyzing the ACF plot displayed in Figure (5.46), it is observed that the 

ACF reaches its spike at lag 1, and the PACF plot indicates a cutoff after lag 2. 

Therefore, the following ARIMA models are considered as tentative models: (2, 1, 1), 

(1, 1, 2), (2, 1, 0), (0, 1, 2), (1, 1, 1), (1, 1, 0) and (0, 1, 1). Among them, the ARIMA 
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(0, 1, 2) model has the smallest AIC and BIC values. Consequently, the ARIMA (0, 1, 

2) model is chosen as the tentative model for over speeding.  

When examining reckless driving, the ACF indicates a cutoff after lag 1, while 

the PACF exhibits a tailing off pattern. As a result, three initial ARIMA models are 

considered: (0, 1, 1), (1, 1, 0), and (1, 1, 1). However, both ARIMA (0, 1, 1) and (1, 1, 

0) models show that the residual values of ACF and PACF exceed the two standard 

error limits, and the Ljung-Box (Q) statistics are significant. Following a thorough 

analysis, the ARIMA (1, 1, 1) model is ultimately chosen as the preferred model for 

reckless driving. When analyzing pedestrian negligence, the ACF displays a cutoff at 

lag 1, while the PACF exhibits a cutoff at lag 2. As a result, several ARIMA models 

are considered: (2, 1, 1), (1, 1, 2), (2, 1, 0), (0, 1, 2), (1, 1, 1), (1, 1, 0) and (0, 1, 1). 

Among these models, the ARIMA (0, 1, 2) model demonstrates the smallest AIC and 

BIC values for pedestrian negligence. Consequently, the ARIMA (0, 1, 2) model is 

chosen as the preferred tentative model for pedestrian negligence. 

 

5.16.2 Parameter Estimation for Input Series 

Table (5.35) presents the estimated parameters and corresponding statistics for 

the ARIMA (0, 1, 2), ARIMA (1, 1, 1), and ARIMA (0, 1, 2) models. 

 

Table (5.35)  

   Estimation of Parameters and their Statistics for ARIMA Models for Input Series 

Input Series Model Parameters Estimates S.E t Sig 

Over 

Speeding 

ARIMA 

(0, 1, 2) 

𝜃0 

𝜃1 

𝜃2 

-0.463** 

0.677*** 

0.224** 

0.177 

0.092 

0.091 

-2.615 

7.371 

2.455 

.010..

000 

.016 

Reckless 

Driving 

ARIMA 

(1, 1, 1) 

𝜃0 

𝜙1 

𝜃1 

-1.153*** 

0.227** 

0.887*** 

0.351 

0.110 

0.056 

-3.285 

2.058 

15.922 

.001 

.042 

.000 

Pedestrian 

Negligence 

ARIMA 

(0, 1, 2) 

𝜃1 

𝜃2 

0.479*** 

0.178* 

0.091 

0.091 

5.250 

1.952 

.000 

.053 

 Source: Own Calculation 

***denotes significant at 1% level, **denotes significant at 5% level, *denotes significant at 

10% level 
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5.16.3 Diagnostic Checking for Input Series 

 The ACF and PACF residual values for over speeding, and pedestrian 

negligence fall within the two standard error limits, as indicated in (Appendix Table: 

E-9). The analysis indicates that reckless driving falls within the two standard error 

limits, with the exception of lag 18 (see Appendix Table: E-9). 

 

5.16.4 Cross Correction Function for Input Series 

 The calculation of the cross-correlation function involved the input series, 

output series, and impulse response estimate. This cross-correlation analysis was 

conducted on each prewhitened input and output series. The outcomes of the cross-

correlation function are displayed in Figure (5.47). 

 
 

 
 

 
Figure (5.47) CCF Plots between Output Series and Input Series of Traffic 

Injuries  
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5.16.5  Identification of Transfer Function – Noise Model 

  The ARIMA model for noise series is displayed in Figure (5.48). 

 

 
 

Figure (5.48)  Plots of Noise Series for Traffic Injuries  

 

In relation to Figure (5.48), it can be observed that the noise series for traffic 

injuries is stationarit. Figure (5.49) displays the sample autocorrelation function 

(ACF) and sample partial autocorrelation function (PACF) for the noise series. 

 

Figure (5.49) ACF and PACF of the Noise Series for Traffic Injuries  

 

The plot of the ACF and PACF tails off. Therefore, ARIMA (1, 0, 1) model is 

considered as tentative model.  

 

5.16.6 Parameter Estimation of Transfer Function – Noise Model 

The estimated parameters and their corresponding statistics for the ARIMA (1, 

0, 1) model are presented in Table (5.36). This table includes the coefficients for the 

autoregressive (AR) and moving average (MA) terms, as well as statistical measures 

like standard errors, t-values, and p-values.  
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Table (5.36) 

Estimation of Parameters and their Statistics for ARIMA (1, 0, 1) Model   

Source: Own Calculation 

***denotes significant at 1% level  

 

 From above Table (5.36), the transfer function - noise model is 

  𝑌𝑡 = 𝜔1𝑋1,𝑡 + 𝜔2𝑋2,𝑡 + 𝜔3𝑋3,𝑡 +
(1−𝜃1)

(1−𝜙1𝐵)
𝑒𝑡 

       = 1.036𝑋1,𝑡 + 1.0137𝑋2,𝑡 + 1,053𝑋3,𝑡 +
(1−0.786)

(1−0.978𝐵)
𝑒𝑡  

  

 The fitted ARIMAX (1, 0, 1) model of traffic injuries gives 𝜙1 = 0.978,  𝜃1 =

0.786, 𝜔1 = 1.036, 𝜔2 = 1.013, 𝑎𝑛𝑑 𝜔3 = 1.053, respectively. The test statistic t for 

all parameter values are statistically significant at 1% level. 

 

5.16.7  Diagnostic Checking for Transfer Function – Noise Model 

  The plots of the residuals ACF and PACF for the fitted ARIMAX (1, 0, 1) 

model are shown in Figure (5.50). 

Parameters Estimates S.E t Sig 

𝜔1 1.036*** 0.050 20.697 0.000 

𝜔2 1.013*** 0.032 31.826 0.000 

𝜔3 1.053*** 0.140 7.545 0.000 

𝜙1 0.978*** 0.021 46.959 0.000 

𝜃1 0.786*** 0.070 11.259 0.000 
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Figure (5.50) ACF and PACF of Residual Noise Series for Traffic Injuries   

   

  According to the Figure (5.50), the residual values of the ACF and PACF for 

the transfer function - noise of traffic injuries fall within the two standard errors limits 

except lag 3. Thus, the residual series is assumed to be white noise process and 

transfer function - noise model is adequate to forecast the future value of the series. In 

addition, the autocorrelation among residuals are checked by using the test statistics 

Ljung-Box (Q). The test statistic with the corresponding p-values of the residuals 

Transfer Function - Noise Model for traffic injuries are shown in Table (5.37). 

 

Table (5.37) 

Model Statistics of ARIMAX-TFM (1, 0, 1) Model for Traffic Injuries  

Model 
Ljung-Box Q (18) 

Statistic Df Sig 

ARIMAX 15.368 16 .498 

 Source: Own Calculation 

 

  As indicated in Table (5.37), the observed Q value is 15.368. The 

corresponding p-value of 0.4985 is not statistically significant. This outcome suggests 

that there is no significant autocorrelation present among the residuals. Thus, 
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ARIMAX- TFM model is adequate to fit the data series of Traffic Injuries in Yangon. 

Comparison between ARIMA model, Intervention model and ARIMAX-TFM for 

traffic injuries are described in Section (5.17). 

 

5.17  Comparison between ARIMA Model, Intervention Model and ARIMAX- 

TFM for Traffic Injuries 

     The criteria for model comparison are different from the model identification 

methods. Model identification tools such as ACF, PACF, IACF, and ESACF are used 

only for identifying adequate models. Residuals from all adequate models are 

approximately white noise. The selection criterion is normally based on summary 

statistics from residuals computed from a fitted model or forecast errors.  The 

comparison between ARIMA model, intervention model and ARIMAX-TFM by 

using AIC, BIC, MAE, MAPE and RMSE described in Table (5.38). 

  

Table (5.38) 

Comparison between ARIMA Model, Intervention Model and ARIMAX-TFM 

for Traffic Injuries  

Model AIC BIC MAE MAPE RMSE 

ARIMA (1, 1, 1) 852.589 862.732 26.624 28.084 33.886 

ARIMAX (1, 0, 0) 

with Intervention 
849.333 852.112 28.100 24.435 35.164 

ARIMAX-TFM 

 (1, 0, 1) 
530.392 535.934 7.134 8.389 9.304 

 Source: Own Calculation 

   

  Based on the AIC and BIC, the minimum values are occurred in ARIMAX-

TFM (1, 0, 1) model. Then alternative criteria for model selection can be based on 

forecast errors such as MAE, MAPE and RMSE values for ARIMAX-TFM 1, 0, 1) 

model are the smallest among three models. Therefore, ARIMAX-TFM (1, 0, 1) 

model is the most suitable to fit the Traffic Injuries in Yangon and this model is used 

to forecast the Traffic Injuries series in Yangon.  
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5.18  Forecasting Traffic Injuries  

 The actual values, forecast values, lower confidence limits and upper 

confidence limits for three periods (January 2023 to March 2023) are obtained and 

shown in Table (5.39) and Figure (5.51). 

 

Table (5.39) 

Forecast Values from January to March, 2023 for Traffic Injuries  

Month/ Year Jan-2023 Feb-2023 Mar-2023 

Actual Values 35 30 55 

Forecast Values 40 36 35 

95% 

Limit 

LCL 21 17 15 

UCL 60 56 55 

Source: Own Calculation 

 

 
Figure (5.51) Forecast Values with 95% Confidence Limit for Traffic Injuries  

 

  Based on the results of the study, the ARIMAX-TFM (1, 0, 1) model's actual 

values and forecast values are not very close for March 2023. However, the forecast 

values still fall within the 95% lower and upper confidence limits, indicating that the 

model's predictions are within an acceptable range of uncertainty. Furthermore, the 

study found that the actual values of traffic accidents in Yangon are decreasing due to 

compliance with established laws. This suggests that measures implemented to 

enforce traffic regulations and safety laws have had a positive impact on reducing 

traffic accidents in the region.  
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CHAPTER VI 

CONCLUSION 

 

 This chapter emphasizes the main findings in achieving to the objectives of 

this study. In addition, the recommendations and suggestions based on the statistical 

analysis of road traffic accidents in Yangon are made in detail. The potential further 

studies regarding the road traffic accidents based on the findings from this study are 

presented in brief. 

 

6.1  Findings 

 This study analyzed and predicted the road traffic accidents and casualties in 

Yangon municipal area. The monthly accident data during the period from January 

2013 to December 2022 were collected from No.(2) Office of Traffic Police at 

Yangon. The risk factors such as gender, place of accident, vehicle types, time of 

accident, reasons for accident and alcohol consumption were applied to examine 

whether these variables are related to traffic fatalities and injuries. The monthly road 

traffic data was also used to forecast the future road traffic accidents and casualties. 

First, the descriptive analysis were used to determine the pattern of traffic accidents, 

fatalities and injuries based on the monthly accident data for the 10-year period 

between 2013 and 2022 from No. (2) Office of Traffic Police at Yangon. Secondly, 

the significant influencing factors of the accident were explored by using logistic 

regression model for each of casualties. Moreover, the autoregressive integrated 

moving average (ARIMA), the intervention and the autoregressive integrated moving 

average with explanatory variables-transfer function (ARIMAX-TFM) models were 

used to explore the impact of road safety measures in reducing the number of 

accidents and casualties in Yangon. In addition, the most suitable model was chosen 

to predict the number of traffic accidents, and casualties occurred in Yangon for the 

next three months period.  

 The trends and patterns in annual traffic accidents were found to vary 

significantly, depending on the particular year. The number of accidents increased 

from 2013 to 2014 but it significantly decreased in 2015. Starting from decline point, 
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the number of traffic accidents further gradually declined in the later years until 2021. 

It can be seen that total accidents over the study period clearly illustrated a downward 

trend from 2014 to 2021. This study showed that the number of fatalities by road 

traffic accidents peaked in 2017 and then steadily decreased to the lowest point in 

2021. Therefore, the total fatality during the period (2013-2022) was an ascending 

trend from 2013 to 2017. However, the number of injuries caused by traffic accidents 

steadily declined from 2013 to 2020 but it can be seen that there was a sharp decrease 

in 2021 as compared to other years. In contrast, the lowest number of all cases such as 

traffic accidents and causalities were found in 2021. This was due to the effect of 

Covid-19 pandemic in Yangon. 

 According to the results of the descriptive analysis, males were more 

frequently involved in traffic accidents compared to females in Myanmar. The 

majorities of drivers in Myanmar were male and were also more likely to drive under 

the influence of alcohol than females. Additionally, men tended to be less disciplined 

than women in their compliance with rules and regulations. In order to study the 

number of traffic accidents and causalities by place, the numbers of accidents cases 

were the most at main road, followed by lane and junction. This case at both place of 

roundabout and on bridge were the fewest number. The number of traffic accidents 

being caused by private car was the highest as compared to other types of vehicle. The 

second highest number of accidents occurred due to taxi and bus, and motorcycle was 

also included as the third type of vehicle which was causing the traffic accidents as 

well. Because this study was done within the boundaries of Yangon, truck and other 

types of vehicles using the highway road as the main way for transportation could not 

be measured for the accidents in this study. As the results of accidents and causalities 

status by time duration, the number of accidents occurred during at night (between 

18:00 PM and 24:00 PM) as compared to morning time (between 6:00 AM to 12:00 

AM) duration within a day. The highest number of accidents and casualties occurred 

at human error. Many accidents and casualties were attributed to human error as first 

and failure of the regulations was constituted as the second causes. Mechanical fault 

and weather conditions were seen as fewer number than the former cases.  

 Moreover, this study analyzed the risk factors related to traffic accidents and 

causalities such as fatality and injury by using binary logistic regression model. 

Independent variables used in this model were gender, accident place, vehicle types, 

time of accidents, and immediate causes for accidents. As the result of logistic 
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regression on traffic fatality data, five independent variables such as gender, accident 

place, vehicle type, time of accidents and immediate causes for accidents were 

significant. The results of analysis on binary logistic regression model highlighted that 

there was a significant increase in the number of traffic accidents by male than 

female. The traffic accidents occurring at junction, roundabout, lane and on bridge led 

to decrease as compared to main place. Accidents by bus and taxi were less likely to 

occur as compared to private car but truck and motorcycle and other types of vehicles 

(three-wheeler, slow vehicle, etc.) were more likely to occur as compared to private 

car in Yangon. According to this regression model, there was a higher likelihood of 

traffic fatalities occurring at night time compared to during the morning time. 

Additionally, it has been observed that traffic accidents and casualties mostly 

occurred when there was no traffic congestion. Traffic accidents caused by failure to 

comply with regulations and human error were more frequent than those resulting 

from mechanical faults and weather conditions. 

 By analyzing the traffic injury data using binary logistic regression, gender, 

accident place, vehicle types, time of accidents, and immediate causes for accidents 

were the significant risk factors. Male was less likely to get injury than female in the 

event of traffic accidents. In the traffic collision at the driving path ways such as lane, 

roundabout and bridge, there was less likely to be injury as compared to that at main 

road but that at junction was more to get injury than at main road. The traffic accident 

by trucks and other vehicles types (three-wheeler, slow vehicle, etc.) can be less 

injury than by private car but, by motorcycle, it is more likely to be injury. Being 

traffic accident in afternoon time and night time durations were less likely to be injury 

as the reference on morning time. In the point of causes of traffic accidents, people 

participating in the traffic accident by failure to comply with the regulation and 

human error were more injury compared to mechanical fault and weather condition.  

  During the analysis of the time series data on traffic accidents in Yangon, it 

was found that the ARIMA (0, 1, 1) model, the ARIMA (1, 0, 0) model with 

intervention, and the ARIMAX-TFM (0, 1, 1) model were all statistically significant 

and effectively captured the collected data. The detailed results of the ARIMAX (1, 0, 

0) model with intervention indicated that the enactment of the Motor Vehicle Law 

(2015) and Vehicle Safety and Motor Vehicle Management Law (2020) had a 

negative impact, leading to a decrease in the number of traffic accidents. However, 

the Permission to Motor Vehicle Law (2016) had a positive impact, resulting in an 
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increase in the number of traffic accidents. The net effect of the Permission to Import 

Vehicle Law variable on traffic accidents is positive; this implies that there is an 

increase traffic accident for each unit increase in the Permission to Import Vehicle 

Law variable. Political changes and the Covid-19 pandemic have had a negative 

impact on traffic accidents. Upon comparing model selection criteria such as MAE, 

MAPE, RMSE, AIC, and BIC values for the ARIMA (0, 1, 1), ARIMA (0, 1, 1) with 

intervention, and ARIMAX-TFM (0, 1, 1) models, it was evident that all criteria 

values for the ARIMAX-TFM (0, 1, 1) model were the smallest among these three 

models. Therefore, the ARIMAX-TFM (0, 1, 1) model is considered the most suitable 

for fitting the traffic accidents data and is utilized to forecast road traffic accidents for 

the upcoming months. As a result of the forecasting, the predicted number of road 

traffic accidents shows a slight decrease over the next three months from January 

2023 to March 2023. 

 When conducting the time series analysis of traffic fatality, it was found that 

the ARIMA (2, 0, 0) model, the ARIMA (0, 0, 0) model with intervention and the 

ARIMAX-TFM (1, 0, 1) are significant and fit the data collected. The detailed results 

of the ARIMAX (0, 0, 0) model with intervention indicated that the enactment of the 

Motor Vehicle Law (2015) had a statistically significant positive impact at a 5% level. 

This positive impact led to an increase in the number of traffic fatalities. However, the 

Vehicle Safety and Motor Vehicle Management Law (2020), Permission to Motor 

Vehicle Law (2016), political changes, and the impact of the Covid-19 pandemic have 

negatively affected and resulted in a decrease in the number of traffic fatalities. After 

comparing model selection criteria such as MAE, MAPE, RMSE, AIC, and BIC 

values for the ARIMA (2, 0, 0), ARIMAX (0, 0, 0) with intervention, and ARIMAX-

TFM (1, 0, 1) models, it was evident that the ARIMAX-TFM (1, 0, 1) model 

exhibited the smallest values across all criteria. Hence, the ARIMAX-TFM (1, 0, 1) 

model is considered the most suitable for fitting the traffic fatality data and is used to 

forecast road traffic fatalities for the upcoming months. The forecast results indicate a 

slight decrease in the predicted number of road traffic fatalities for the next three 

months from January 2023 to March 2023. 

 In the time series analysis of traffic injuries, significant models that fit the 

collected data were ARIMA (1, 1, 1), ARIMA (1, 0, 0) with intervention, and 

ARIMAX-TFM (1, 0, 1). The detailed results of the ARIMA (1, 0, 0) model with 

intervention indicated that the enactment of the Motor Vehicle Law (2015) and 
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Vehicle Safety and Motor Vehicle Management Law (2020) had a negative impact, 

leading to a decrease in the number of traffic injuries. However, the Permission to 

Motor Vehicle Law (2016) had a positive impact, resulting in an increase in the 

number of traffic injuries. Political changes and the Covid-19 pandemic showed no 

significant impact on traffic injuries. After comparing model selection criteria such as 

MAE, MAPE, RMSE, AIC, and BIC values for ARIMA (1, 1, 1), ARIMA (1, 0, 0) 

with intervention, and ARIMAX-TFM (1, 0, 1) models, it was evident that all criteria 

values for the ARIMAX-TFM (1, 0, 1) were the smallest among these three models. 

Therefore, the ARIMAX-TFM (1, 0, 1) is considered the most suitable for fitting the 

traffic injury data and is utilized to forecast road traffic injuries for the upcoming 

months. As a result of the forecasting, the predicted number of road traffic injuries 

shows a slight decrease in January and February, followed by a slight increase in 

March 2023. 

  

6.2 Recommendations and Suggestions 

 Some recommendations and suggestions about traffic accidents are made 

based on the main findings. According to the findings of this study, it might be that 

some drivers do not usually use seatbelts which can prevent the likelihood of fatality 

in accidents. Also, in driving motorcycles, most people never take helmets on their 

heads. These are the reasons why traffic fatalities have risen in traffic collisions. 

Hence, the responsible government agency or department should enact the law of 

national seatbelt and motorcycle helmet strictly. Furthermore, people who break the 

traffic rules and regulations ought to be arrested in accordance with the laws due to 

the large number of accidents caused by those people. The importance of addressing 

factors such as driving behaviors, road conditions, and the use of safety measures to reduce 

the occurrence and severity of accidents. 

 To forgive human error will need upgrading the safe system approach to road 

safety, in which people’s vulnerability to serious injuries in road traffic accidents 

ensure a safe transport system for all road users. In the case of reducing drink driving, 

random breath testing needs to be served by responsible persons for decreasing the 

influence of alcohol as the risk of road traffic accidents. Therefore, the warning 

signposts should be placed not to drink alcohol during driving on the public road. 

Road traffic injuries can cause the economic losses to individuals suffered by 

themselves, which have arisen from the cost of treatment as well as lost productivity 
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for those killed or disable by injuries. And also, it makes their families as a whole by 

taking time off work to care for their recovery.  

 However, there are cases where individuals involved in traffic accidents 

resolve matters amongst themselves, leading to incidents that might go unreported in 

official lists of traffic accidents, fatalities, and injuries. Consequently, obtaining 

accurate data on actual fatalities and injuries related to traffic accidents becomes 

challenging. In order to address this issue, the government should actively 

disseminate information about traffic accidents and preventive measures, along with 

rules and regulations. This effort should target a wide range of individuals, including 

factory workers, pedestrians, students, employees from various organizations, 

company drivers, taxi drivers, bus drivers, and private drivers. The goal is to mitigate 

the occurrence of traffic accidents.   

 By adhering to vehicle, traffic, and road rules, substantial reductions in 

property damage and human casualties can be achieved. All road users, including 

pedestrians, share the responsibility for their own safety. Therefore, fostering public 

engagement becomes crucial for accident reduction, and enhancing awareness holds 

significant importance for everyone on the road. Ensuring drivers' and vehicles' 

fitness is vital for minimizing injuries and enhancing survival rates in the event of a 

crash. 

 To maintain stringent traffic regulations in Yangon, an increased number of 

traffic rules and awareness campaigns should be implemented. Intersection 

management should be reinforced with more traffic lights and roundabout 

installations at critical points. Additionally, incentivizing responsible behavior 

through rewards linked to fines collected from illegal traffic activities should be 

promoted. These fines could be channeled into traffic law enforcement and other 

national development initiatives. 

To combat the rise in speeding-related collisions, drivers should be provided 

with clear guidelines regarding recommended average speeds within cities and 

townships. The rising concern of mobile phone-related distractions while driving must 

also be addressed. Enforcing traffic laws related to drunk driving, seat-belt usage, 

speed limits, helmet-wearing, and mobile phone use is essential. Neglecting 

enforcement of these laws undermines the anticipated reduction in accidents and 

casualties attributed to specific risky behaviors. 
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 Efficient enforcement by traffic authorities should encompass promoting safer 

driving behaviors like seat-belt compliance, adherence to speed limits, and preventing 

intoxicated driving. Additionally, enhancing vehicle safety features and implementing 

laws targeting key risks are crucial. Public awareness campaigns should be employed 

to share crash-related information, enhancing the understanding of risks. A 

comprehensive strategy involving these aspects is essential and can be informed by 

this study, benefiting policy makers, planners, engineers, and the government in 

formulating effective prevention and safety plans. These efforts can lead to fewer 

accidents resulting in fatalities or injuries. 

 Improving road design and engineering is paramount for both safe and 

efficient traffic flow. Proper signage, road markings, and traffic control devices 

should be deployed. Pedestrian walkways and cycling lanes must be constructed to 

segregate vulnerable road users from motorized traffic. High-risk zones should feature 

traffic calming measures such as speed bumps and roundabouts. The integration of 

automated traffic enforcement systems, including red light cameras and speed 

cameras, serves to discourage violations. Extensive road safety education programs 

are necessary for all road users, encompassing drivers, pedestrians, and cyclists. 

To promote alternative modes of transportation and reduce reliance on private 

vehicles, encouraging public transit, cycling, and walking is essential. Supporting 

electric and hybrid vehicles through infrastructure and incentives not only reduces 

emissions but also improves air quality. The increasing prevalence of electric vehicles 

and ongoing technological advancements will likely reshape the landscape of road 

traffic accidents and casualties. Understanding the full impact of these changes is 

complex, given the various benefits, risks, and challenges they bring. Safety protocols 

are crucial for the successful advancement of these technologies to ensure the ongoing 

safety of all road users. 

Collaboration among government agencies, law enforcement, transport 

authorities, and relevant stakeholders is vital for formulating and executing 

comprehensive road safety strategies. Involving NGOs, community organizations, and 

businesses can amplify awareness and provide support for road safety initiatives. 

Information and Communication Technology (ICT) initiatives play a pivotal role in 

reducing traffic accidents by integrating advanced systems and solutions for traffic 

management, monitoring, and safety. Intelligent Transportation Systems (ITS), 

Traffic Management Centers (TMC), Connected Vehicle Technology, Intelligent 
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Speed Adaptation (ISA), Driver Assistance Systems, Road Weather Information 

Systems, Data Analytics, and Predictive Modeling, as well as Public Awareness and 

Education Campaigns, constitute key ICT initiatives that can contribute to a 

significant reduction in traffic accidents. 

 

6.3 Further Studies 

 Traffic accidents can also be influenced by external factors, such as weather 

conditions and road infrastructure, which can be difficult to consider in this study. 

Besides, the road infrastructure-related factors including road users, road construction, 

roadway designs and installation of speed limiting devices for all vehicles are in a 

better position of influencing road traffic safety and reducing traffic collision. Another 

factor of traffic accidents for less developed countries is whether the existing roads 

meet technical standards for all road users that take into account for road safety. 

Making good quality roads with lightings and signals is not to be forgotten as the 

protective factors for traffic accidents. However, the data on these factors were not 

obtained and couldn’t include in this study. 

 In further research, adding a more comprehensive set of traffic accident-

related factors can provide the analysis to be more accurate. By accounting for the 

prevention measures involving enhancing post-crash care, vehicle safety, improving 

roads and so on, the problem of increasing traffic accidents can be examined and 

reduced to the optimal level in the future research. Besides, other influencing factors 

such as condition of brake system, the profession on driving, length of driving 

experience, the strength of vehicle types can be applied as the special categories in 

analyzing traffic fatality. However, certain risk factors, including tyre burst, broken 

brakes, failure to comply with traffic laws, loss of control, and other infrastructure-

related factors, are not included in this study's analysis. 

 In this study, only the aggregated monthly count data for Yangon were used 

and thus generalizing the findings could not make generalization about the whole 

country. Therefore, additional research should be conducted to investigate whether 

there are variations by geographic regions. Additionally, it is suggested to conduct 

further research on traffic accidents using artificial neural networks, vector 

autoregressive models, and outlier models. By employing these distinct statistical 

methods, the findings can be compared and provide valuable insights into the study of 

traffic accidents. 
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Appendix A 

Table (A-1) 

Traffic Fatality and Gender Crosstabulation 

 

Crosstab 

 

Gender 

Total Female Male 

Acctype Non-

fatality 

Count 5863 12567 18430 

Expected Count 5493.6 12936.4 18430.0 

% within Acctype 31.8% 68.2% 100.0% 

% within Gender 89.5% 81.4% 83.8% 

% of Total 26.7% 57.2% 83.8% 

Fatality Count 690 2864 3554 

Expected Count 1059.4 2494.6 3554.0 

% within Acctype 19.4% 80.6% 100.0% 

% within Gender 10.5% 18.6% 16.2% 

% of Total 3.1% 13.0% 16.2% 

Total Count 6553 15431 21984 

Expected Count 6553.0 15431.0 21984.0 

% within Acctype 29.8% 70.2% 100.0% 

% within Gender 100.0% 100.0% 100.0% 

% of Total 29.8% 70.2% 100.0% 

 

 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Exact Sig. (2-

sided) 

Exact Sig. (1-

sided) 

Pearson Chi-Square 218.869a 1 .000   

Continuity Correctionb 218.277 1 .000   

Likelihood Ratio 234.211 1 .000   

Fisher's Exact Test    .000 .000 

N of Valid Cases 21984     

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 1059.38. 

b. Computed only for a 2x2 table 

 

 

 

 

 



 

 

 

Table (A-2) 

Traffic Fatality and Places of Accident Crosstabulation 

Crosstab 

 

Place 

Total Main 

Road 
Lane Junction On Bridge Roundabout 

Acctype Non-

fatality 

Count 11962 3553 2206 663 46 18430 

Expected Count 12180.2 3396.1 2165.4 643.0 45.3 18430.0 

% within Acctype 64.9% 19.3% 12.0% 3.6% 0.2% 100.0% 

% within Place 82.3% 87.7% 85.4% 86.4% 85.2% 83.8% 

Fatality Count 54.4% 16.2% 10.0% 3.0% 0.2% 83.8% 

Expected Count 2567 498 377 104 8 3554 

% within Acctype 2348.8 654.9 417.6 124.0 8.7 3554.0 

% within Place 72.2% 14.0% 10.6% 2.9% 0.2% 100.0% 

Total Count 4052 17.7% 12.3% 14.6% 13.6% 14.8% 

Expected Count 4052.0 11.7% 2.3% 1.7% 0.5% 0.0% 

% within Acctype 18.4% 14529 4051 2583 767 54 

% within Place 100.0% 14529.0 4051.0 2583.0 767.0 54.0 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 77.638a 4 .000 

Likelihood Ratio 80.689 4 .000 

N of Valid Cases 21984   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 8.73. 

 

 

 

 

 

 

 

 

 



 

 

 

Table (A-3) 

Traffic Fatality and Type of Vehicles Crosstabulation 

Crosstab 

 

Vehicle Type Total 

Car Bus Taxi 
Motorcy

cle 
Truck Others 

 

Acctype Non-

fatality 

Count 7249 2808 4686 2616 592 479 18430 

Expected Count 7302.8 2665.1 4488.5 2771.5 616.2 586.0 18430.0 

% within 

Acctype 

39.3% 15.2% 25.4% 14.2% 3.2% 2.6% 100.0% 

% within Vtype 83.2% 88.3% 87.5% 79.1% 80.5% 68.5% 83.8% 

Fatality Count 33.0% 12.8% 21.3% 11.9% 2.7% 2.2% 83.8% 

Expected Count 1462 371 668 690 143 220 3554 

% within 

Acctype 

1408.2 513.9 865.5 534.5 118.8 113.0 3554.0 

% within Vtype 41.1% 10.4% 18.8% 19.4% 4.0% 6.2% 100.0% 

Total Count 8712 16.8% 11.7% 12.5% 20.9% 19.5% 31.5% 

Expected Count 8712.0 6.7% 1.7% 3.0% 3.1% 0.7% 1.0% 

% within 

Acctype 

39.6% 8711 3179 5354 3306 735 699 

% within Vtype 100.0% 8711.0 3179.0 5354.0 3306.0 735.0 699.0 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 284.354a 5 .000 

Likelihood Ratio 267.430 5 .000 

N of Valid Cases 21984   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 113.00. 

 

 

 

 

 

 

 

 



 

 

 

Table (A-4) 

Traffic Fatality and Times of Accident Crosstabulation 

 

Crosstab 

 

Time_4 

Total 

6:00 AM-

12:00 AM 

12:00 AM-

18:00 PM 

18:00 PM-

24:00 PM 

24:00 PM-

6:00 AM 

Acctype Non-

fatality 

Count 3602 4180 7318 3330 18430 

Expected Count 3516.0 4021.5 7425.2 3467.4 18430.0 

% within 

Acctype 

19.5% 22.7% 39.7% 18.1% 100.0% 

% within 

Time_4 

85.9% 87.1% 82.6% 80.5% 83.8% 

% of Total 16.4% 19.0% 33.3% 15.1% 83.8% 

Fatality Count 592 617 1539 806 3554 

Expected Count 678.0 775.5 1431.8 668.6 3554.0 

% within 

Acctype 

16.7% 17.4% 43.3% 22.7% 100.0% 

% within 

Time_4 

14.1% 12.9% 17.4% 19.5% 16.2% 

% of Total 2.7% 2.8% 7.0% 3.7% 16.2% 

Total Count 4194 4797 8857 4136 21984 

Expected Count 4194.0 4797.0 8857.0 4136.0 21984.0 

% within 

Acctype 

19.1% 21.8% 40.3% 18.8% 100.0% 

% within 

Time_4 

100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 19.1% 21.8% 40.3% 18.8% 100.0% 

 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 94.882a 3 .000 

Likelihood Ratio 95.875 3 .000 

N of Valid Cases 21984   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 668.64. 

 

 

 

 



 

 

 

Table (A-5) 

Traffic Fatality and Immediate Causes for Accident Crosstabulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Crosstab 

 

Causes 

Total 

Mechanical 

Fault & 

Weather 

Condition 

Failure 
Human 

Error 

Acctype Non-

fatality 

Count 55 2022 16353 18430 

Expected Count 47.8 2313.8 16068.4 18430.0 

% within Acctype 0.3% 11.0% 88.7% 100.0% 

% within Causes 96.5% 73.3% 85.3% 83.8% 

Fatality Count 0.3% 9.2% 74.4% 83.8% 

Expected Count 2 738 2814 3554 

% within Acctype 9.2 446.2 3098.6 3554.0 

% within Causes 0.1% 20.8% 79.2% 100.0% 

Total Count 57 3.5% 26.7% 14.7% 

Expected Count 57.0 0.0% 3.4% 12.8% 

% within Acctype 0.3% 57 2760 19167 

% within Causes 100.0% 57.0 2760.0 19167.0 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-

sided) 

Pearson Chi-Square 265.565a 2 .000 

Likelihood Ratio 238.903 2 .000 

Linear-by-Linear Association 217.312 1 .000 

N of Valid Cases 21984   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 

9.21. 



 

 

 

Table (B-1) 

Traffic Injury and Gender Crosstabulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crosstab 

 

Gender 

Total Female Male 

Acctype Non-

injury 

Count 15 2291 2306 

Expected Count 653.7 1652.3 2306.0 

% within Acctype 0.7% 99.3% 100.0% 

% within Gender 0.3% 15.4% 11.1% 

% of Total 0.1% 11.0% 11.1% 

Injury Count 5863 12567 18430 

Expected Count 5224.3 13205.7 18430.0 

% within Acctype 31.8% 68.2% 100.0% 

% within Gender 99.7% 84.6% 88.9% 

% of Total 28.3% 60.6% 88.9% 

Total Count 5976 5878 14858 

Expected Count 5976.0 5878.0 14858.0 

% within Acctype 27.9% 28.3% 71.7% 

% within Gender 100.0% 100.0% 100.0% 

% of Total 27.9% 28.3% 71.7% 

Chi-Square Tests 

 Value df 

Asymptotic 

Significance (2-sided) 

Exact Sig. 

(2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square 979.861a 1 .000   

Continuity Correctionb 978.327 1 .000   

Likelihood Ratio 1490.670 1 .000   

Fisher's Exact Test    .000 .000 

Linear-by-Linear 

Association 

979.813 1 .000 
  

N of Valid Cases 20736     

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 653.68. 

b. Computed only for a 2x2 table 



 

 

 

Table (B-2) 

Traffic Injury and Places of Accident Crosstabulation 

Crosstab 

 

Accident Place 

Total Main 

Road 
Lane Junction 

On 

Bridge 
Roundabout 

Acctyp

e 

Non-injury Count 1418 686 87 101 14 2306 

Expected Count 1488.0 471.4 255.0 85.0 6.7 2306.0 

% within 

Acctype 

61.5% 29.7% 3.8% 4.4% 0.6% 100.0% 

% within 

Accplace 

10.6% 16.2% 3.8% 13.2% 23.3% 11.1% 

% of Total 6.8% 3.3% 0.4% 0.5% 0.1% 11.1% 

Injury Count 11962 3553 2206 663 46 18430 

Expected Count 11892.0 3767.6 2038.0 679.0 53.3 18430.0 

% within 

Acctype 

64.9% 19.3% 12.0% 3.6% 0.2% 100.0% 

% within 

Accplace 

89.4% 83.8% 96.2% 86.8% 76.7% 88.9% 

% of Total 57.7% 17.1% 10.6% 3.2% 0.2% 88.9% 

Total Count 4339 13380 4239 2293 764 60 

Expected Count 4339.0 13380.0 4239.0 2293.0 764.0 60.0 

% within 

Acctype 

20.2% 64.5% 20.4% 11.1% 3.7% 0.3% 

% within 

Accplace 

100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 20.2% 64.5% 20.4% 11.1% 3.7% 0.3% 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 250.598a 4 .000 

Likelihood Ratio 274.496 4 .000 

Linear-by-Linear Association 1.302 1 .254 

N of Valid Cases 20736   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 6.67. 

 

 

 

  



 

 

 

Table (B-3) 

Traffic Injury and Type of Vehicles Crosstabulation 

Crosstab 

 

Vehicle Type 
Total 

Car Bus Taxi Motorcycle Truck Others 

Acctype Non-

injury 

Count 863 290 645 12 130 366 2306 

Expected Count 902.1 344.5 592.8 292.3 80.3 94.0 2306.0 

% within Acctype 37.4% 12.6% 28.0% 0.5% 5.6% 15.9% 100.0% 

% within Vtype 10.6% 9.4% 12.1% 0.5% 18.0% 43.3% 11.1% 

Injury Count 4.2% 1.4% 3.1% 0.1% 0.6% 1.8% 11.1% 

Expected Count 7249 2808 4686 2616 592 479 18430 

% within Acctype 7209.9 2753.5 4738.2 2335.7 641.7 751.0 18430.0 

% within Vtype 39.3% 15.2% 25.4% 14.2% 3.2% 2.6% 100.0% 

Total Count 8712 89.4% 90.6% 87.9% 99.5% 82.0% 56.7% 

Expected Count 8712.0 35.0% 13.5% 22.6% 12.6% 2.9% 2.3% 

% within Acctype 39.6% 8112 3098 5331 2628 722 845 

% within Vtype 100.0% 8112.0 3098.0 5331.0 2628.0 722.0 845.0 

 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 1239.789a 5 .000 

Likelihood Ratio 1127.636 5 .000 

Linear-by-Linear Association 146.003 1 .000 

N of Valid Cases 20736   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 80.29. 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

Table (B-4) 

Traffic Injury and Times of Accident Crosstabulation 

 

Crosstab 

 

Time_4 

Total 

6:00 AM-

12:00 AM 

12:00 AM-

18:00 PM 

18:00 PM-

24:00 PM 

24:00 PM-

6:00 AM 

Acctype Non-

injury 

Count 308 545 912 541 2306 

Expected Count 434.8 525.5 915.1 430.6 2306.0 

% within Acctype 13.4% 23.6% 39.5% 23.5% 100.0% 

% within Time_4 7.9% 11.5% 11.1% 14.0% 11.1% 

% of Total 1.5% 2.6% 4.4% 2.6% 11.1% 

Injury Count 3602 4180 7317 3331 18430 

Expected Count 3475.2 4199.5 7313.9 3441.4 18430.0 

% within Acctype 19.5% 22.7% 39.7% 18.1% 100.0% 

% within Time_4 92.1% 88.5% 88.9% 86.0% 88.9% 

% of Total 17.4% 20.2% 35.3% 16.1% 88.9% 

Total Count 4194 3910 4725 8229 3872 

Expected Count 4194.0 3910.0 4725.0 8229.0 3872.0 

% within Acctype 19.1% 18.9% 22.8% 39.7% 18.7% 

% within Time_4 100.0% 100.0% 100.0% 100.0% 100.0% 

% of Total 19.1% 18.9% 22.8% 39.7% 18.7% 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 256.800a 2 0.000 

Likelihood Ratio 405.101 2 0.000 

Linear-by-Linear Association 191.742 1 0.000 

N of Valid Cases 20736 
    

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 430.60. 

 

 

 

 

 

 

 

  



 

 

 

Table (B-5) 

Traffic Injury and Immediate Causes of Accident Crosstabulation 

 

 

Chi-Square Tests 

 Value df Asymptotic Significance (2-sided) 

Pearson Chi-Square 74.297a 3 0.000 

Likelihood Ratio 76.356 3 0.000 

Linear-by-Linear Association 58.259 1 0.000 

N of Valid Cases 20736 
   

a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 7.78. 

 

 

 

 

 

 

 

 

  

Crosstab 

 

Causes 

Total 

Mechanical Fault 

& Weather 

Condition 

Failure Human Error 

Acctype Non-

injury 

Count 15 13 2278 2306 

Expected Count 7.8 226.3 2071.9 2306.0 

% within Acctype 0.7% 0.6% 98.8% 100.0% 

% within Causes 21.4% 0.6% 12.2% 11.1% 

Injury Count 0.1% 0.1% 11.0% 11.1% 

Expected Count 55 2022 16353 18430 

% within Acctype 62.2 1808.7 16559.1 18430.0 

% within Causes 0.3% 11.0% 88.7% 100.0% 

Total Count 57 78.6% 99.4% 87.8% 

Expected Count 57.0 0.3% 9.8% 78.9% 

% within Acctype 0.3% 70 2035 18631 

% within Causes 100.0% 70.0 2035.0 18631.0 



 

 

 

Table (C-1) 

Test of Seasonality for Traffic Accidents and Casualties 

 

 Hypotheses 

       Null Hypothesis: There is no seasonal variation. 

       i.e., 𝛽1 = 𝛽2 = 𝛽3 = ⋯ = 𝛽12 

Alternative Hypothesis: There is seasonal variation. 

            i.e., at least two 𝛽𝑗′𝑠 are not equal: 

                   𝛽1 ≠ 𝛽2 ≠ 𝛽3 ≠ ⋯ ≠ 𝛽12  

 

      The test statistic used is 

   F = 
𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑚𝑜𝑛𝑡ℎ𝑠

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
  

 

Data Series F-statistic Decision 

Accidents 0.95 
The monthly data of traffic accidents in Yangon do 

not exist seasonality. 

Fatalities 1.25 
The monthly data of traffic fatalities in Yangon do not 

exist seasonality 

Injuries 0.77 
The monthly data of traffic injuries in Yangon do not 

exist seasonality 

 

       

 

 

 

 

 

 

 

 

 



 

 

 

Table (C-2) 

Augmented Dickey-Fuller Test for Traffic Accidents 

(Before First Difference) 

 

 

 (After First Difference) 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table (C-3) 

ACF and PACF of First Difference Series for Traffic Accidents 

 

Table (C-4) 

ACF and PACF of Residuals for ARIMA (0, 1, 1) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF 0.063 -0.020 -0.058 0.009 0.006 0.100 0.022 -0.138 -0.127 -0.066 0.134 0.003 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.093 0.093 0.095 0.096 0.097 0.098 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

ACF 0.126 0.113 -0.093 -0.155 -0.023 0.020 -0.054 -0.125 -0.038 -0.149 -0.118 0.074 

SE 0.098 0.100 0.101 0.102 0.103 0.104 0.104 0.104 0.105 0.105 0.107 0.108 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF 0.063 -0.024 -0.055 0.016 0.002 0.098 0.011 -0.138 -0.102 -0.060 0.130 -0.029 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.132 0.147 -0.092 -0.152 -0.072 -0.025 -0.067 -0.131 0.051 -0.086 -0.097 0.016 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

 

 

 

 

 

  

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-
Model_1 

ACF -0.368 -0.039 -0.006 0.002 -0.041 0.080 0.052 -0.102 -0.039 -0.091 0.187 -0.124 

SE 0.091 0.090 0.090 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-
Model_1 

ACF 0.030 0.168 -0.103 -0.086 0.026 0.083 -0.029 -0.067 0.061 -0.041 -0.105 0.049 

SE 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

              
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-
Model_1 

PACF -0.368 -0.201 -0.117 -0.065 -0.087 0.030 0.107 -0.024 -0.087 -0.200 0.062 -0.070 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-
Model_1 

PACF -0.049 0.199 0.092 -0.038 -0.081 0.012 0.031 -0.125 -0.003 0.008 -0.080 -0.066 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 



 

 

 

Table (C-5) 

Augmented Dickey-Fuller Test for Pre-intervention of Traffic Accidents 

 

 

Table (C-6) 

ACF and PACF of Residuals for ARIMA (1, 0, 0) Model with Intervention  

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF -0.174 0.143 -0.026 0.126 0.073 0.088 0.026 -0.068 0.160 -0.097 0.149 0.010 

SE 0.092 0.095 0.097 0.097 0.098 0.099 0.099 0.099 0.100 0.102 0.103 0.104 

Model 13 13 14 15 16 17 18 19 20 21 22 23 

Accidents-

Model_1 

ACF 0.125 0.156 -0.050 0.003 0.066 0.128 -0.059 -0.033 0.000 0.035 -0.014 0.014 

SE 0.104 0.106 0.108 0.108 0.108 0.108 0.109 0.110 0.110 0.110 0.110 0.110 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-
Model_1 

-0.174 0.116 0.017 0.113 0.117 0.097 0.037 -0.099 0.109 -0.073 0.076 0.075 0.001 

0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-
Model_1 

0.107 0.218 -0.049 -0.084 0.026 0.056 -0.049 -0.133 0.017 0.037 -0.074 0.009 0.052 

0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

  



 

 

 

Table (C-7) 

Augmented Dickey-Fuller Test for Over Speeding and Pedestrian Negligence  

 

  

 

 

Augmented Dickey-Fuller Test for Reckless Driving 

(Before First Difference) 

 

 

  



 

 

 

(After First Difference) 

 

Table (C-8) 

ACF and PACF of Residuals Values for Input Series  

 For ARIMA (2, 0, 0) 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF -0.055 -0.125 0.029 0.024 0.042 0.130 0.062 0.080 0.078 -0.095 0.056 0.042 

SE 0.091 0.092 0.093 0.093 0.093 0.093 0.095 0.095 0.096 0.096 0.097 0.097 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

ACF 0.083 0.067 -0.049 0.021 -0.064 0.057 -0.081 0.008 0.227 0.001 -0.114 0.013 

SE 0.097 0.098 0.098 0.099 0.099 0.099 0.099 0.100 0.100 0.104 0.104 0.105 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF -0.055 -0.129 0.015 0.010 0.051 0.143 0.094 0.130 0.114 -0.066 0.048 -0.012 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.067 0.046 -0.059 0.020 -0.114 0.034 -0.139 -0.047 0.214 0.016 -0.010 0.020 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 



 

 

 

For ARIMA (0, 1, 1) 

 
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF 0.014 0.016 -0.161 -0.024 0.028 0.118 -0.036 -0.078 -0.041 -0.125 0.158 -0.103 

SE 0.091 0.091 0.091 0.093 0.093 0.093 0.094 0.094 0.095 0.095 0.096 0.098 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-
Model_1 

ACF 0.056 0.053 -0.002 -0.002 0.019 -0.058 0.038 0.032 0.022 -0.047 -0.045 -0.027 

SE 0.099 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.101 0.101 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF 0.014 0.015 -0.162 -0.020 0.034 0.095 -0.049 -0.075 -0.003 -0.135 0.140 -0.132 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.036 0.116 -0.041 0.025 -0.002 -0.045 0.040 -0.006 0.061 -0.096 0.019 -0.007 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 

 
 

 

 

 

 

 
  



 

 

 

For ARIMA (2, 0, 0) 

 
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF -0.030 -0.115 0.001 0.038 0.027 -0.072 0.109 -0.030 -0.004 0.156 0.085 0.101 

SE 0.090 0.090 0.091 0.091 0.092 0.092 0.092 0.093 0.093 0.093 0.095 0.096 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

ACF -0.024 0.103 -0.065 0.018 -0.008 -0.055 -0.020 0.096 0.046 -0.130 -0.106 0.145 

SE 0.097 0.097 0.098 0.098 0.098 0.098 0.098 0.098 0.099 0.099 0.101 0.102 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF -0.030 -0.116 -0.007 0.025 0.029 -0.064 0.113 -0.041 0.019 0.156 0.097 0.142 

SE 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.142 0.029 0.121 -0.062 0.053 -0.052 -0.056 -0.070 0.076 -0.031 -0.147 -0.171 

SE 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 

 

 
 

 
 

 

 
  



 

 

 

Table (C-9) 

Cross Correlation between Output Series and Input Series of Traffic Accidents  

 

 
 For Over - Speeding 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 

Correlation 
0.203 0.095 0.203 0.095 0.203 0.095 0.203 0.095 0.203 0.095 0.203 0.095 0.203 0.095 0.203 

Std. Errora 0.079 0.094 0.079 0.094 0.079 0.094 0.079 0.094 0.079 0.094 0.079 0.094 0.079 0.094 0.079 

 

   For Reckless Driving 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 

Correlation 
-0.062 0.094 -0.062 0.094 -0.062 0.094 -0.062 0.094 -0.062 0.094 -0.062 0.094 -0.062 0.094 -0.062 

Std. Errora 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 

 

   For Pedestrian Negligence 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 

Correlation 
0.12 0.095 0.12 0.095 0.12 0.095 0.12 0.095 0.12 0.095 0.12 0.095 0.12 0.095 0.12 

Std. Errora 0.081 0.094 0.081 0.094 0.081 0.094 0.081 0.094 0.081 0.094 0.081 0.094 0.081 0.094 0.081 

 

Table (C-10) 

ACF and PACF of Noise Series for Traffic Accidents 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

ACF -0.373 0.091 -0.373 0.091 -0.373 0.091 -0.373 0.091 -0.373 0.091 -0.373 0.091 

SE 0.024 0.090 0.024 0.090 0.024 0.090 0.024 0.090 0.024 0.090 0.024 0.090 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-
Model_1 

ACF 0.155 0.086 0.155 0.086 0.155 0.086 0.155 0.086 0.155 0.086 0.155 0.086 

SE -0.003 0.085 -0.003 0.085 -0.003 0.085 -0.003 0.085 -0.003 0.085 -0.003 0.085 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF -0.373 0.092 -0.373 0.092 -0.373 0.092 -0.373 0.092 -0.373 0.092 -0.373 0.092 

SE -0.133 0.092 -0.133 0.092 -0.133 0.092 -0.133 0.092 -0.133 0.092 -0.133 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.152 0.092 0.152 0.092 0.152 0.092 0.152 0.092 0.152 0.092 0.152 0.092 

SE 0.121 0.092 0.121 0.092 0.121 0.092 0.121 0.092 0.121 0.092 0.121 0.092 

 

  



 

 

 

Table (C-11) 

ACF and PACF of Residuals for ARIMAX-TFM (0, 1, 1) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-
Model_1 

ACF 0.002 -0.009 0.016 0.032 0.017 0.118 0.085 -0.063 -0.059 -0.036 0.182 -0.013 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.093 0.094 0.094 0.094 0.095 0.097 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

ACF 0.120 0.209 -0.031 -0.057 0.068 0.104 -0.004 -0.057 0.021 -0.047 -0.093 0.066 

SE 0.097 0.099 0.102 0.102 0.103 0.103 0.104 0.104 0.104 0.104 0.104 0.105 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Accidents-

Model_1 

PACF 0.002 -0.009 0.016 0.032 0.017 0.119 0.086 -0.062 -0.064 -0.050 0.179 -0.022 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Accidents-

Model_1 

PACF 0.115 0.230 -0.010 -0.055 0.010 0.061 -0.014 -0.119 0.029 -0.023 -0.074 0.013 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

 

Table (D-1) 

Augmented Dickey-Fuller Test for Traffic Fatality 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table (D-2) 

ACF and PACF of Original Series for Traffic Fatalities 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-

Model_1 

ACF 0.284 0.271 0.162 0.092 0.182 0.14 0.09 -0.008 -0.019 0.005 0.172 0.154 

SE 0.09 0.09 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

ACF 0.229 0.137 0.181 0.077 0.096 0.193 0.15 0.07 0.073 -0.041 0.004 0.076 

SE 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.083 0.082 0.082 0.081 0.081 

              
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-

Model_1 

PACF 0.284 0.208 0.048 -0.011 0.135 0.06 -0.021 -0.1 -0.032 0.02 0.196 0.086 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

PACF 0.144 0.016 0.095 -0.088 -0.037 0.101 0.081 -0.052 0.048 -0.09 -0.017 0.016 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

Table (D-3) 

ACF and PACF of Residuals for ARIMA (2, 0, 0) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-

Model_1 

ACF -0.015 -0.018 0.024 -0.051 0.116 0.101 0.056 -0.062 -0.091 -0.065 0.126 0.078 

SE 0.091 0.091 0.091 0.091 0.092 0.093 0.094 0.094 0.094 0.095 0.095 0.097 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

ACF 0.142 0.035 0.099 -0.038 -0.012 0.166 0.096 0.009 0.050 -0.086 -0.039 0.082 

SE 0.097 0.099 0.099 0.100 0.100 0.100 0.102 0.103 0.103 0.103 0.104 0.104 

 

 

 

 

 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-

Model_1 

PACF -0.015 -0.018 0.024 -0.050 0.116 0.103 0.068 -0.066 -0.088 -0.082 0.110 0.063 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

PACF 0.160 0.066 0.168 -0.045 -0.052 0.073 0.086 -0.004 0.091 -0.051 -0.023 0.011 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 



 

 

 

Table (D-4) 

Augmented Dickey-Fuller Test of Pre-intervention for Traffic Fatalities 

 

 

 

Table (D-5) 

ACF and PACF of Residuals for ARIMA (0, 0, 0) Model with Intervention 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-

Model_1 

ACF 0.120 0.193 0.034 -0.047 0.070 0.007 -0.034 -0.151 -0.129 -0.135 0.049 -0.008 

SE 0.092 0.093 0.096 0.096 0.097 0.097 0.097 0.097 0.099 0.100 0.102 0.102 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

ACF 0.098 0.009 0.064 -0.044 -0.060 0.063 -0.023 -0.047 -0.041 -0.105 -0.019 -0.002 

SE 0.102 0.103 0.103 0.103 0.103 0.104 0.104 0.104 0.104 0.104 0.105 0.105 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-
Model_1 

PACF 0.120 0.182 -0.007 -0.089 0.083 0.020 -0.069 -0.163 -0.074 -0.061 0.111 0.002 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

PACF 0.087 -0.002 0.059 -0.108 -0.111 0.056 0.011 -0.084 0.011 -0.036 0.039 -0.011 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

 

 

 

 

 

 

 

 



 

 

 

Table (D-6) 

Augmented Dickey-Fuller Test for Over Speeding, Reckless Driving and  

Pedestrian Negligence 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table (D-7) 

ACF and PACF of Residuals Values for Input Series 

 

For ARIMA (0, 0, 0) 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-

Model_1 

ACF -0.088 0.123 0.092 -0.007 0.064 -0.089 0.088 -0.023 0.031 -0.014 -0.083 0.118 

SE 0.091 0.092 0.093 0.094 0.094 0.094 0.095 0.096 0.096 0.096 0.096 0.097 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-

Model_1 

ACF 0.007 0.188 -0.019 0.066 0.087 -0.125 0.134 -0.033 0.124 -0.048 -0.070 -0.094 

SE 0.098 0.098 0.101 0.101 0.101 0.102 0.103 0.104 0.105 0.106 0.106 0.106 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-

Model_1 

PACF -0.088 0.116 0.115 -0.004 0.038 -0.092 0.063 0.002 0.031 -0.025 -0.088 0.094 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-

Model_1 

PACF 0.066 0.189 -0.013 0.009 0.041 -0.105 0.085 0.024 0.098 -0.060 -0.096 -0.161 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 

 

 



 

 

 

For ARIMA (2, 0, 0) 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-

Model_1 
ACF -0.012 -0.041 -0.011 -0.001 0.123 0.089 -0.020 -0.020 0.147 -0.019 0.187 0.003 

SE 0.091 0.091 0.091 0.091 0.091 0.093 0.094 0.094 0.094 0.096 0.096 0.099 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-
Model_1 

ACF 0.124 0.074 0.053 -0.017 -0.011 0.078 0.171 0.155 -0.075 -0.144 0.002 0.196 

SE 0.099 0.100 0.100 0.101 0.101 0.101 0.101 0.103 0.105 0.106 0.107 0.107 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-
Model_1 

PACF -0.012 -0.041 -0.012 -0.003 0.122 0.093 -0.007 -0.011 0.151 -0.031 0.183 0.006 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-

Model_1 

PACF 0.162 0.055 0.068 -0.040 -0.022 0.028 0.171 0.112 -0.026 -0.213 -0.036 0.082 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 

 

 

  



 

 

 

For ARIMA (0, 0, 0) 

 

 

 
 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-
Model_1 

ACF 0.147 0.166 0.073 0.144 -0.016 0.078 0.15 -0.046 0.078 0.033 0.098 0.07 

SE 0.09 0.09 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-
Model_1 

ACF 0.038 -0.055 0.048 -0.042 -0.045 -0.038 0.111 0.08 0.128 0.173 0.01 0.093 

SE 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.083 0.082 0.082 0.081 0.081 

              
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-
Model_1 

PACF 0.147 0.147 0.031 0.112 -0.065 0.052 0.143 -0.12 0.073 0.011 0.051 0.085 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-
Model_1 

PACF -0.054 -0.092 0.077 -0.087 -0.032 -0.025 0.109 0.116 0.094 0.102 -0.068 0.056 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 



 

 

 

Table (D-8) 

Cross Correlation between Output Series and Input Series of Traffic Fatalities  

 

           For Over Speeding  

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 
Correlation 

0.009 -0.021 0.023 -0.106 0.017 0.045 -0.063 0.016 -0.176 -0.209 -0.065 -0.189 -0.120 -0.148 0.005 

Std. Errora 0.094 0.094 0.093 0.093 0.092 0.092 0.092 0.091 0.092 0.092 0.092 0.093 0.093 0.094 0.094 

 

 

           For Reckless Driving 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 
Correlation 

0.105 0.095 0.105 0.095 0.105 0.095 0.105 0.095 0.105 0.095 0.105 0.095 0.105 0.095 0.105 

Std. Errora 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 0.094 0.062 

 

         For Pedestrian Negligence 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 

Correlation 
-0.144 0.094 -0.144 0.094 -0.144 0.094 -0.144 0.094 -0.144 0.094 -0.144 0.094 -0.144 0.094 -0.144 

Std. Errora -0.060 0.094 -0.060 0.094 -0.060 0.094 -0.060 0.094 -0.060 0.094 -0.060 0.094 -0.060 0.094 -0.060 

 

Table (D-9) 

ACF and PACF of Noise Series for Traffic Fatalities 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Pedestrian_Negligence-

Model_1 

ACF -0.026 0.069 -0.048 -0.115 0.165 -0.032 0.039 -0.108 -0.162 0.053 0.018 0.120 

SE 0.092 0.092 0.092 0.092 0.094 0.096 0.096 0.096 0.097 0.099 0.100 0.100 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Pedestrian_Negligence-
Model_1 

ACF 0.038 0.007 -0.018 -0.081 0.044 0.047 0.013 -0.094 0.101 -0.134 -0.024 0.050 

SE 0.101 0.101 0.101 0.101 0.102 0.102 0.102 0.102 0.103 0.104 0.105 0.105 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Pedestrian_Negligence-

Model_1 

PACF -0.026 0.068 -0.045 -0.123 0.170 -0.012 0.001 -0.105 -0.138 0.039 0.048 0.074 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Pedestrian_Negligence-

Model_1 

PACF 0.044 0.050 -0.026 -0.084 -0.008 0.045 0.014 -0.088 0.174 -0.120 -0.081 0.030 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

  



 

 

 

Table (D-10) 

ACF and PACF of Residuals for ARIMAX-TFM (1, 0, 1) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-
Model_1 

ACF 0.056 0.058 0.034 -0.024 0.032 0.108 0.113 0.016 
-

0.010 
-0.050 0.008 

-
0.075 

SE 0.091 0.092 0.092 0.092 0.092 0.092 0.093 0.094 0.094 0.094 0.095 0.095 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

ACF 0.082 0.019 0.020 0.008 0.119 0.188 0.042 0.040 0.060 0.041 -0.002 
-

0.053 

SE 0.095 0.096 0.096 0.096 0.096 0.097 0.100 0.100 0.100 0.101 0.101 0.101 

              

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Fatality-
Model_1 

PACF 0.056 0.055 0.028 -0.031 0.031 0.107 0.102 
-

0.009 
-

0.028 
-0.051 0.016 

-
0.088 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Fatality-

Model_1 

PACF 0.070 0.006 0.024 0.008 0.139 0.198 0.020 
-

0.013 
0.046 0.034 -0.042 

-

0.154 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

Table (E-1) 

Augmented Dickey-Fuller Test for Traffic Injury 

(Before First Difference) 

 

(After First Difference) 

  



 

 

 

Table (E-2) 

ACF and PACF of First Different Series for Traffic Injuries 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

ACF -0.436 
-

0.019 
0.111 

-

0.214 
0.065 0.088 

-

0.085 

-

0.005 
0.039 

-

0.173 
0.089 0.09 

SE 0.091 0.09 0.09 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF -0.074 0.139 0.023 
-

0.175 
0.079 

-
0.029 

-
0.064 

0.026 0.059 
-

0.019 
-

0.089 
0.071 

SE 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.436 
-

0.258 
-

0.017 
-

0.218 
-

0.161 
-

0.004 
-

0.031 
-

0.105 
-

0.051 
-0.22 -0.17 

-
0.026 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF -0.037 0.076 0.185 0.012 
-

0.021 

-

0.036 

-

0.089 

-

0.192 

-

0.033 
0.095 

-

0.084 

-

0.024 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

Table (E-3) 

ACF and PACF of Residuals for ARIMA (1, 1, 1) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

ACF -0.052 0.103 0.135 -0.133 0.055 0.067 -0.073 -0.030 -0.006 -0.126 0.099 0.133 

SE 0.092 0.092 0.093 0.095 0.096 0.096 0.097 0.097 0.097 0.097 0.099 0.099 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF 0.043 0.158 0.038 -0.149 -0.005 -0.079 -0.101 -0.013 0.037 -0.012 -0.054 0.089 

SE 0.101 0.101 0.103 0.103 0.105 0.105 0.106 0.106 0.106 0.106 0.106 0.107 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.052 0.101 0.147 -0.133 0.013 0.086 -0.041 -0.085 -0.006 -0.084 0.089 0.165 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF 0.077 0.089 0.032 -0.170 -0.104 -0.067 -0.065 -0.041 0.145 0.114 -0.081 0.052 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

 

 

 

  



 

 

 

Table (E-4) 

Augmented Dickey-Fuller Test of Pre-intervention for Traffic Injury 

 

 

 

Table (E-5) 

ACF and PACF of Pre-intervention Series for Traffic Injuries  

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

ACF 0.164 0.169 0.164 0.169 0.164 0.169 0.164 0.169 0.164 0.169 0.164 0.169 

SE 0.125 0.166 0.125 0.166 0.125 0.166 0.125 0.166 0.125 0.166 0.125 0.166 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF -0.135 0.132 -0.135 0.132 -0.135 0.132 -0.135 0.132 -0.135 0.132 -0.135 0.132 

SE 0.034 0.129 0.034 0.129 0.034 0.129 0.034 0.129 0.034 0.129 0.034 0.129 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF 0.164 0.177 0.164 0.177 0.164 0.177 0.164 0.177 0.164 0.177 0.164 0.177 

SE 0.101 0.177 0.101 0.177 0.101 0.177 0.101 0.177 0.101 0.177 0.101 0.177 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF 0.029 0.177 0.029 0.177 0.029 0.177 0.029 0.177 0.029 0.177 0.029 0.177 

SE -0.036 0.177 -0.036 0.177 -0.036 0.177 -0.036 0.177 -0.036 0.177 -0.036 0.177 

 

 

 

 

 

 

 

 



 

 

 

Table (E-6) 

ACF and PACF of Residuals for ARIMA (1, 0, 0) Model with Intervention 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

ACF -0.062 0.107 0.124 -0.068 0.081 0.003 -0.064 -0.054 0.049 -0.154 0.071 0.12 

SE 0.092 0.092 0.093 0.094 0.095 0.095 0.095 0.096 0.096 0.096 0.098 0.099 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF 0.045 0.068 0.009 -0.124 -0.027 0.036 -0.122 0.003 0.026 -0.031 -0.023 0.179 

SE 0.1 0.1 0.101 0.101 0.102 0.102 0.102 0.103 0.103 0.103 0.103 0.103 

 

 

Table (E-7) 

Augmented Dickey-Fuller Test for Over Speeding, Reckless Driving and 

Pedestrian Negligence 

(Before First Difference) 

 

 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.062 0.103 0.138 -0.065 0.045 0.009 -0.063 -0.086 0.065 -0.127 0.054 0.156 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF 0.104 0.002 -0.015 -0.158 -0.094 0.043 -0.041 -0.016 0.096 0.061 -0.073 0.157 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 



 

 

 

 

 (After First Difference) 

 

 

 

 

 



 

 

 

Table (E-8) 

ACF and PACF of the First different Input Series for Traffic Injuries  

 

For Over Speeding 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-

Model_1 

ACF -0.369 -0.206 0.190 -0.047 -0.130 0.131 -0.032 -0.062 0.117 -0.130 -0.057 0.159 

SE 0.091 0.090 0.090 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF -0.023 -0.120 0.236 -0.150 -0.038 0.098 -0.112 -0.092 0.230 -0.011 -0.179 0.123 

SE 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

 
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.369 -0.396 -0.086 -0.090 -0.176 -0.043 -0.073 -0.077 0.037 -0.129 -0.171 -0.043 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF -0.005 -0.094 0.146 -0.033 0.018 0.008 -0.108 -0.210 -0.020 0.081 -0.039 -0.032 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

 

 
For Reckless Driving 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

ACF -0.384 -0.017 -0.134 -0.034 0.147 -0.075 -0.003 0.029 0.016 -0.154 0.052 0.032 

SE 0.091 0.090 0.090 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF 0.077 0.051 -0.018 -0.078 0.095 -0.232 0.046 0.131 0.052 -0.008 -0.259 0.081 

SE 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

 

 
 

 

 

 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.384 -0.193 -0.263 -0.273 -0.054 -0.120 -0.134 -0.038 0.004 -0.237 -0.180 -0.124 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-

Model_1 

PACF -0.084 0.027 0.148 0.055 0.210 -0.099 -0.206 -0.048 0.080 0.091 -0.127 -0.082 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 



 

 

 

For Pedestrian Negligence 

 

 

 

Table (E-9) 

Comparison of ARIMA Models for Pre-intervention Series of  

Traffic Injuries  

Criteria ARIMA (1, 0, 0) ARIMA (0, 0, 1) 

AIC 849.333 860.701 

BIC 852.112 863.480 

 

 

Table (E-10) 

ACF and PACF of Residuals Values for Input Series  

For ARIMA (0, 1, 2) 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-

Model_1 

ACF 0.006 0.000 0.170 -0.014 -0.101 0.065 -0.040 -0.070 0.040 -0.120 -0.046 0.131 

SE 0.091 0.091 0.091 0.093 0.093 0.094 0.094 0.095 0.095 0.095 0.096 0.096 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-

Model_1 

ACF 0.044 -0.030 0.188 -0.100 -0.054 0.011 -0.122 -0.081 0.176 0.026 -0.098 0.103 

SE 0.098 0.098 0.098 0.101 0.102 0.102 0.102 0.103 0.104 0.106 0.106 0.107 

 
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Over_Speeding-

Model_1 

PACF 0.006 0.000 0.170 -0.017 -0.104 0.039 -0.036 -0.038 0.022 -0.121 -0.018 0.121 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Over_Speeding-

Model_1 

PACF 0.078 -0.019 0.126 -0.127 -0.029 -0.048 -0.100 -0.036 0.169 0.099 -0.059 0.010 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-

Model_1 

ACF -0.325 -0.133 0.063 -0.065 -0.028 0.015 0.069 
-

0.114 

-

0.057 
0.123 0.053 0.010 

SE 0.091 0.090 0.090 0.089 0.089 0.089 0.088 0.088 0.087 0.087 0.087 0.086 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

ACF 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

SE 0.086 0.085 0.085 0.085 0.084 0.084 0.083 0.083 0.082 0.082 0.082 0.081 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-
Model_1 

PACF -0.325 -0.266 -0.094 -0.131 -0.121 -0.092 0.017 -0.115 -0.172 -0.028 0.070 0.100 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-
Model_1 

PACF -0.102 0.106 0.061 0.029 0.044 -0.173 -0.077 0.055 0.010 -0.024 -0.048 0.035 

SE 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 0.092 



 

 

 

 

 
 

 

 

For ARIMA (1, 1, 1) 

 
Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-

Model_1 

ACF -0.004 0.025 -0.110 -0.031 0.117 -0.039 -0.002 0.017 -0.009 -0.110 0.069 0.114 

SE 0.091 0.091 0.091 0.092 0.092 0.093 0.093 0.093 0.093 0.093 0.094 0.095 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-

Model_1 

ACF 0.176 0.124 0.016 -0.079 -0.018 -0.222 0.014 0.146 0.084 -0.019 -0.196 0.104 

SE 0.096 0.098 0.100 0.100 0.100 0.100 0.104 0.104 0.106 0.106 0.106 0.109 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-

Model_1 

PACF -0.004 0.025 -0.110 -0.033 0.124 -0.050 -0.017 0.048 -0.012 -0.137 0.094 0.131 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-

Model_1 

PACF 0.136 0.143 0.082 -0.083 -0.015 -0.250 -0.053 0.166 0.115 -0.011 -0.109 0.098 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 

 



 

 

 

 
 

For ARIMA (0, 1, 2) 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-

Model_1 

ACF -0.007 0.008 0.038 -0.065 -0.044 -0.014 0.024 -0.097 -0.026 0.141 0.100 0.054 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.092 0.092 0.094 0.095 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-

Model_1 

ACF -0.074 0.110 -0.050 -0.076 -0.014 -0.190 -0.001 0.084 0.008 -0.014 -0.048 0.015 

SE 0.095 0.096 0.097 0.097 0.097 0.097 0.100 0.100 0.101 0.101 0.101 0.101 

 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Reckless_Driving-

Model_1 

PACF -0.007 0.008 0.038 -0.065 -0.045 -0.014 0.029 -0.098 -0.033 0.140 0.117 0.045 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Reckless_Driving-

Model_1 
PACF -0.105 0.117 -0.015 -0.071 -0.051 -0.165 0.038 0.091 -0.042 -0.061 -0.051 0.013 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 
 



 

 

 

 
 

Table (E-11) 

     Cross Correlation between Output Series and Input Series of Traffic Injuries  

For Over Speeding 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 

Correlation 
-0.156 0.095 -0.156 0.095 -0.156 0.095 -0.156 0.095 -0.156 0.095 -0.156 0.095 -0.156 0.095 -0.156 

Std. Errora 0.063 0.095 0.063 0.095 0.063 0.095 0.063 0.095 0.063 0.095 0.063 0.095 0.063 0.095 0.063 

 

For Reckless Driving 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 
Correlation 

-0.065 0.095 -0.065 0.095 -0.065 0.095 -0.065 0.095 -0.065 0.095 -0.065 0.095 -0.065 0.095 -0.065 

Std. Errora -0.051 0.094 -0.051 0.094 -0.051 0.094 -0.051 0.094 -0.051 0.094 -0.051 0.094 -0.051 0.094 -0.051 

 

For Pedestrian Negligence 

Lag -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

Cross 
Correlation 

-0.064 0.095 -0.064 0.095 -0.064 0.095 -0.064 0.095 -0.064 0.095 -0.064 0.095 -0.064 0.095 -0.064 

Std. Errora 0.173 0.094 0.173 0.094 0.173 0.094 0.173 0.094 0.173 0.094 0.173 0.094 0.173 0.094 0.173 

 



 

 

 

Table (E-12) 

ACF and PACF of Noise Series for Traffic Injuries 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Pedestrian_Negligence-
Model_1 

PACF 0.424 0.091 0.424 0.091 0.424 0.091 0.424 0.091 0.424 0.091 0.424 0.091 

SE 0.300 0.091 0.300 0.091 0.300 0.091 0.300 0.091 0.300 0.091 0.300 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Pedestrian_Negligence-
Model_1 

PACF -0.043 0.091 -0.043 0.091 -0.043 0.091 -0.043 0.091 -0.043 0.091 -0.043 0.091 

SE -0.021 0.091 -0.021 0.091 -0.021 0.091 -0.021 0.091 -0.021 0.091 -0.021 0.091 

 

Table (E-13) 

ACF and PACF of Residuals for ARIMAX-TFM (1, 0, 1) Model 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-

Model_1 

ACF -0.019 -0.018 -0.060 -0.068 0.157 0.077 0.026 -0.045 -0.135 -0.052 -0.036 0.147 

SE 0.091 0.091 0.091 0.092 0.092 0.094 0.095 0.095 0.095 0.097 0.097 0.097 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-

Model_1 

ACF -0.010 0.004 -0.041 -0.125 -0.047 0.097 -0.053 -0.084 0.015 -0.096 -0.058 0.028 

SE 0.099 0.099 0.099 0.099 0.100 0.100 0.101 0.101 0.102 0.102 0.103 0.103 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Injury-

Model_1 

PACF -0.019 -0.018 -0.061 -0.071 0.153 0.079 0.027 -0.030 -0.112 -0.075 -0.071 0.120 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Injury-

Model_1 

PACF -0.013 0.041 0.005 -0.093 -0.105 0.062 -0.093 -0.114 0.080 -0.047 -0.088 -0.013 

SE 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 0.091 

 

 

Model 1 2 3 4 5 6 7 8 9 10 11 12 

Pedestrian_Negligence-

Model_1 

ACF 0.424 0.090 0.424 0.090 0.424 0.090 0.424 0.090 0.424 0.090 0.424 0.090 

SE 0.425 0.090 0.425 0.090 0.425 0.090 0.425 0.090 0.425 0.090 0.425 0.090 

Model 13 14 15 16 17 18 19 20 21 22 23 24 

Pedestrian_Negligence-

Model_1 

ACF 0.180 0.085 0.180 0.085 0.180 0.085 0.180 0.085 0.180 0.085 0.180 0.085 

SE 0.153 0.085 0.153 0.085 0.153 0.085 0.153 0.085 0.153 0.085 0.153 0.085 


